These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9361432)

  • 1. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite.
    Tauriainen S; Karp M; Chang W; Virta M
    Appl Environ Microbiol; 1997 Nov; 63(11):4456-61. PubMed ID: 9361432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent bacterial sensor for cadmium and lead.
    Tauriainen S; Karp M; Chang W; Virta M
    Biosens Bioelectron; 1998 Oct; 13(9):931-8. PubMed ID: 9839381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
    Ji G; Silver S
    J Bacteriol; 1992 Jun; 174(11):3684-94. PubMed ID: 1534328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria.
    Ramanathan S; Shi W; Rosen BP; Daunert S
    Anal Chem; 1997 Aug; 69(16):3380-4. PubMed ID: 9271073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267.
    Rosenstein R; Peschel A; Wieland B; Götz F
    J Bacteriol; 1992 Jun; 174(11):3676-83. PubMed ID: 1534327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus.
    Silver S; Budd K; Leahy KM; Shaw WV; Hammond D; Novick RP; Willsky GR; Malamy MH; Rosenberg H
    J Bacteriol; 1981 Jun; 146(3):983-96. PubMed ID: 7016838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite.
    Scott DL; Ramanathan S; Shi W; Rosen BP; Daunert S
    Anal Chem; 1997 Jan; 69(1):16-20. PubMed ID: 8990978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pI258 from Staphylococcus aureus.
    Götz F; Zabielski J; Philipson L; Lindberg M
    Plasmid; 1983 Mar; 9(2):126-37. PubMed ID: 6602348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite.
    Sato T; Kobayashi Y
    J Bacteriol; 1998 Apr; 180(7):1655-61. PubMed ID: 9537360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ars operon of Escherichia coli confers arsenical and antimonial resistance.
    Carlin A; Shi W; Dey S; Rosen BP
    J Bacteriol; 1995 Feb; 177(4):981-6. PubMed ID: 7860609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.
    Wysocki R; Chéry CC; Wawrzycka D; Van Hulle M; Cornelis R; Thevelein JM; Tamás MJ
    Mol Microbiol; 2001 Jun; 40(6):1391-401. PubMed ID: 11442837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258.
    Bröer S; Ji G; Bröer A; Silver S
    J Bacteriol; 1993 Jun; 175(11):3480-5. PubMed ID: 8501052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury.
    Petänen T; Romantschuk M
    Chemosphere; 2003 Jan; 50(3):409-13. PubMed ID: 12656262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria.
    Diorio C; Cai J; Marmor J; Shinder R; DuBow MS
    J Bacteriol; 1995 Apr; 177(8):2050-6. PubMed ID: 7721697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258.
    Ji G; Silver S
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9474-8. PubMed ID: 1409657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
    Corbisier P; Ji G; Nuyts G; Mergeay M; Silver S
    FEMS Microbiol Lett; 1993 Jun; 110(2):231-8. PubMed ID: 8349095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenical resistance of growth and phosphate control of antibiotic biosynthesis in Streptomyces.
    Hänel F; Krügel H; Fiedler G
    J Gen Microbiol; 1989 Mar; 135(3):583-91. PubMed ID: 2621441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of an anion pump: purification of the ArsC protein.
    Rosen BP; Weigel U; Monticello RA; Edwards BP
    Arch Biochem Biophys; 1991 Feb; 284(2):381-5. PubMed ID: 1703401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors.
    Tauriainen S; Virta M; Chang W; Karp M
    Anal Biochem; 1999 Aug; 272(2):191-8. PubMed ID: 10415088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing.
    Ivask A; Rõlova T; Kahru A
    BMC Biotechnol; 2009 May; 9():41. PubMed ID: 19426479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.