These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9362062)

  • 1. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly.
    Stephens RE
    Mol Biol Cell; 1997 Nov; 8(11):2187-98. PubMed ID: 9362062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turnover of tubulin in ciliary outer doublet microtubules.
    Stephens RE
    Cell Struct Funct; 1999 Oct; 24(5):413-8. PubMed ID: 15216899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ciliogenesis in sea urchin embryos--a subroutine in the program of development.
    Stephens RE
    Bioessays; 1995 Apr; 17(4):331-40. PubMed ID: 7741725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential incorporation of tubulin into the junctional region of ciliary outer doublet microtubules: a model for treadmilling by lattice dislocation.
    Stephens RE
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):130-40. PubMed ID: 11013393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration.
    Stephens RE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():683-92. PubMed ID: 8207090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantal tektin synthesis and ciliary length in sea-urchin embryos.
    Stephens RE
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():403-13. PubMed ID: 2592446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubulin in sea urchin embryonic cilia: characterization of the membrane-periaxonemal matrix.
    Stephens RE
    J Cell Sci; 1991 Nov; 100 ( Pt 3)():521-31. PubMed ID: 1808204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective incorporation of architectural proteins into terminally differentiated molluscan gill cilia.
    Stephens RE
    J Exp Zool; 1996 Apr; 274(5):300-9. PubMed ID: 8618104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics.
    Stephens RE
    J Exp Zool; 2001 May; 289(6):335-49. PubMed ID: 11351321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of tubulin gene transcription by deciliation of sea urchin embryos.
    Gong ZY; Brandhorst BP
    Mol Cell Biol; 1987 Dec; 7(12):4238-46. PubMed ID: 3437889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubulin in sea urchin embryonic cilia: post-translational modifications during regeneration.
    Stephens RE
    J Cell Sci; 1992 Apr; 101 ( Pt 4)():837-45. PubMed ID: 1527182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular chaperones in cilia and flagella: implications for protein turnover.
    Stephens RE; Lemieux NA
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):274-83. PubMed ID: 10602256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control of tektin A mRNA correlates with cilia development and length determination during sea urchin embryogenesis.
    Norrander JM; Linck RW; Stephens RE
    Development; 1995 Jun; 121(6):1615-23. PubMed ID: 7600979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and expression of sea urchin embryonic ciliary dynein beta heavy chain.
    Foltz KR; Asai DJ
    Cell Motil Cytoskeleton; 1990; 16(1):33-46. PubMed ID: 1693885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins.
    Auclair W; Siegel BW
    Science; 1966 Nov; 154(3751):913-5. PubMed ID: 4886827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential protein synthesis and utilization during cilia formation in sea urchin embryos.
    Stephens RE
    Dev Biol; 1977 Dec; 61(2):311-29. PubMed ID: 145385
    [No Abstract]   [Full Text] [Related]  

  • 17. Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos.
    Mizuno K; Shiba K; Yaguchi J; Shibata D; Yaguchi S; Prulière G; Chenevert J; Inaba K
    Sci Rep; 2017 Sep; 7(1):10751. PubMed ID: 28883641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubulin synthesis in sea urchin embryos. II. Ciliary A tubulin derives from the unfertilized egg.
    Bibring T; Baxandall J
    Dev Biol; 1981 Apr; 83(1):122-6. PubMed ID: 7195355
    [No Abstract]   [Full Text] [Related]  

  • 19. Coordinate and selective beta-tubulin gene expression associated with cilium formation in sea urchin embryos.
    Harlow P; Nemer M
    Genes Dev; 1987 Dec; 1(10):1293-304. PubMed ID: 3428593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The IC138 and IC140 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin.
    Hendrickson TW; Goss JL; Seaton CA; Rohrs HW
    Biochim Biophys Acta; 2013 Dec; 1833(12):3265-3271. PubMed ID: 24080090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.