These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9362112)

  • 1. Interaction of mercury with human and bovine milk proteins.
    Mata L; Sanchez L; Calvo M
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1641-5. PubMed ID: 9362112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein binding of mercury in milk and plasma from mice and man--a comparison between methylmercury and inorganic mercury.
    Sundberg J; Ersson B; Lönnerdal B; Oskarsson A
    Toxicology; 1999 Oct; 137(3):169-84. PubMed ID: 10522497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of zinc to bovine and human milk proteins.
    Singh H; Flynn A; Fox PF
    J Dairy Res; 1989 May; 56(2):235-48. PubMed ID: 2760297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of zinc and its binding to casein in milks and formulas.
    Pabón ML; Lönnerdal B
    J Trace Elem Med Biol; 2000 Oct; 14(3):146-53. PubMed ID: 11130851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in protein fractions of milk obtained from cows with mastitis caused by Staphylococcus aureus. Preliminary studies].
    Kostyra E
    Rocz Panstw Zakl Hig; 1990; 41(5-6):263-8. PubMed ID: 2101178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the protein fractions of human milk during lactation.
    Sanchez-Pozo A; Lopez J; Pita ML; Izquierdo A; Guerrero E; Sanchez-Medina F; Martinez Valverde A; Gil A
    Ann Nutr Metab; 1986; 30(1):15-20. PubMed ID: 3954320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the ability to bind lipids of beta-lactoglobulin and serum albumin of milk from ruminant and non-ruminant species.
    Pérez MD; Puyol P; Ena JM; Calvo M
    J Dairy Res; 1993 Feb; 60(1):55-63. PubMed ID: 8436666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase.
    Chen CC; Hsieh JF
    Sci Rep; 2016 Dec; 6():39040. PubMed ID: 27966639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc binding: a difference between human and bovine milk.
    Eckhert CD; Sloan MV; Duncan JR; Hurley LS
    Science; 1977 Feb; 195(4280):789-90. PubMed ID: 836589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems.
    Wang L; Hayes KD; Mauer LJ
    J Dairy Sci; 2006 Jan; 89(1):58-70. PubMed ID: 16357268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and immunochemical approaches to understanding the glycation behaviour of the casein and β-lactoglobulin fractions of flavoured drinks under UHT processing conditions.
    Geicu OI; Stanca L; Dinischiotu A; Serban AI
    Sci Rep; 2018 Aug; 8(1):12869. PubMed ID: 30150692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial hydrolysis of cow's milk proteins by human trypsins and elastases in vitro.
    Jakobsson I; Borulf S; Lindberg T; Benediktsson B
    J Pediatr Gastroenterol Nutr; 1983 Nov; 2(4):613-6. PubMed ID: 6557138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of fatty acids with beta-lactoglobulin and albumin from ruminant milk.
    Pérez MD; Díaz de Villegas C; Sánchez L; Aranda P; Ena JM; Calvo M
    J Biochem; 1989 Dec; 106(6):1094-7. PubMed ID: 2628426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties.
    Jensen HB; Holland JW; Poulsen NA; Larsen LB
    J Dairy Sci; 2012 Jun; 95(6):2891-903. PubMed ID: 22612926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk.
    Hinz K; O'Connor PM; Huppertz T; Ross RP; Kelly AL
    J Dairy Res; 2012 May; 79(2):185-91. PubMed ID: 22365180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of polysaccharide-milk protein interactions induced by chitosan.
    Chen CC; Chen ST; Hsieh JF
    Molecules; 2015 Apr; 20(5):7737-49. PubMed ID: 25927902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human milk components cross-reacting with antibodies against bovine beta-lactoglobulin.
    Neuteboom B; Giuffrida MG; Cantisani A; Napolitano L; Alessandri A; Fabris C; Bertino E; Conti A
    Acta Paediatr; 1992; 81(6-7):469-74. PubMed ID: 1392355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro digestion of proteins in human milk fortifiers and in preterm formula.
    Lindberg T; Engberg S; Sjöberg LB; Lönnerdal B
    J Pediatr Gastroenterol Nutr; 1998 Jul; 27(1):30-6. PubMed ID: 9669723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A procedure for the purification of beta-lactoglobulin from bovine milk using gel filtration chromatography at low pH.
    Naqvi Z; Khan RH; Saleemuddin M
    Prep Biochem Biotechnol; 2010; 40(4):326-36. PubMed ID: 21108136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical backscatter method for determining thermal denaturation of β-lactoglobulin and other whey proteins in milk.
    Lamb A; Payne F; Xiong YL; Castillo M
    J Dairy Sci; 2013 Mar; 96(3):1356-65. PubMed ID: 23357014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.