BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 9362451)

  • 1. Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis.
    Palombella VJ; Conner EM; Fuseler JW; Destree A; Davis JM; Laroux FS; Wolf RE; Huang J; Brand S; Elliott PJ; Lazarus D; McCormack T; Parent L; Stein R; Adams J; Grisham MB
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15671-6. PubMed ID: 9861028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteasomes in apoptosis: villains or guardians?
    Wójcik C
    Cell Mol Life Sci; 1999 Dec; 56(11-12):908-17. PubMed ID: 11212325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors.
    Pakjoo M; Ahmadi SE; Zahedi M; Jaafari N; Khademi R; Amini A; Safa M
    Cell Commun Signal; 2024 Feb; 22(1):105. PubMed ID: 38331801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Step Mechanism of Cyclin B Degradation Initiated by Proteolytic Cleavage with the 26 S Proteasome in Fish.
    Tokumoto T; Hossain MF; Jyoti MMS; Ali MH; Hossain MB; Acharjee M; Rezanujjaman M; Tokumoto M
    Sci Rep; 2020 Jun; 10(1):8924. PubMed ID: 32488101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells.
    Jia L; Gopinathan G; Sukumar JT; Gribben JG
    PLoS One; 2012; 7(2):e32584. PubMed ID: 22393418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible regions within I{kappa}B{alpha} create the ubiquitin-independent degradation signal.
    Mathes E; Wang L; Komives E; Ghosh G
    J Biol Chem; 2010 Oct; 285(43):32927-32936. PubMed ID: 20682784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response.
    Tsvetkov P; Reuven N; Prives C; Shaul Y
    J Biol Chem; 2009 Sep; 284(39):26234-42. PubMed ID: 19617345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The COOH-terminal domain of wild-type Cot regulates its stability and kinase specific activity.
    Gándara ML; López P; Hernando R; Castaño JG; Alemany S
    Mol Cell Biol; 2003 Oct; 23(20):7377-90. PubMed ID: 14517305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome.
    Touitou R; Richardson J; Bose S; Nakanishi M; Rivett J; Allday MJ
    EMBO J; 2001 May; 20(10):2367-75. PubMed ID: 11350925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription.
    Hay DC; Kemp GD; Dargemont C; Hay RT
    Mol Cell Biol; 2001 May; 21(10):3482-90. PubMed ID: 11313474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation.
    Rodriguez MS; Desterro JM; Lain S; Lane DP; Hay RT
    Mol Cell Biol; 2000 Nov; 20(22):8458-67. PubMed ID: 11046142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of NF-kappa B transcriptional activation by signal induced proteolysis of I kappa B alpha.
    Hay RT; Vuillard L; Desterro JM; Rodriguez MS
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1601-9. PubMed ID: 10582246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-dependent degradation of IkappaBalpha is mediated by an inducible destruction box that can be transferred to NF-kappaB, bcl-3 or p53.
    Wulczyn FG; Krappmann D; Scheidereit C
    Nucleic Acids Res; 1998 Apr; 26(7):1724-30. PubMed ID: 9512545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The carboxy-terminus of I kappaB alpha determines susceptibility to degradation by the catalytic core of the proteasome.
    Kroll M; Conconi M; Desterro MJ; Marin A; Thomas D; Friguet B; Hay RT; Virelizier JL; Arenzana-Seisdedos F; Rodriguez MS
    Oncogene; 1997 Oct; 15(15):1841-50. PubMed ID: 9362451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo.
    Krappmann D; Wulczyn FG; Scheidereit C
    EMBO J; 1996 Dec; 15(23):6716-26. PubMed ID: 8978697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation.
    Han Y; Weinman S; Boldogh I; Walker RK; Brasier AR
    J Biol Chem; 1999 Jan; 274(2):787-94. PubMed ID: 9873017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of NF-kappa B inhibitor I kappa B alpha: ubiquitin-dependent proteolysis and its degradation product.
    Li CC; Dai RM; Longo DL
    Biochem Biophys Res Commun; 1995 Oct; 215(1):292-301. PubMed ID: 7575604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory functions of ubiquitination in the immune system.
    Ben-Neriah Y
    Nat Immunol; 2002 Jan; 3(1):20-6. PubMed ID: 11753406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach.
    Amit S; Ben-Neriah Y
    Semin Cancer Biol; 2003 Feb; 13(1):15-28. PubMed ID: 12507553
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.