These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 9363338)

  • 1. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo.
    Gorman SP; Jones DS; Bonner MC; Akay M; Keane PF
    Biomaterials; 1997 Oct; 18(20):1379-83. PubMed ID: 9363338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial.
    Gorman SP; Tunney MM; Keane PF; Van Bladel K; Bley B
    J Biomed Mater Res; 1998 Mar; 39(4):642-9. PubMed ID: 9492227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys.
    Jin L; Yao L; Yuan F; Dai G; Xue B
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):665-672. PubMed ID: 32929829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ureteral stents: coil strength and durometer.
    Hendlin K; Dockendorf K; Horn C; Pshon N; Lund B; Monga M
    Urology; 2006 Jul; 68(1):42-5. PubMed ID: 16844448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture of polyurethane double pigtail stents: an in vivo retrospective and prospective fluoroscopic study.
    el-Sherif A
    Br J Urol; 1995 Jul; 76(1):108-14. PubMed ID: 7648041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: mechanical properties and comparative resistance to urinary encrustation.
    Jones DS; Bonner MC; Gorman SP; Akay M; Keane PF
    J Mater Sci Mater Med; 1997 Nov; 8(11):713-7. PubMed ID: 15348824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ureteral double-J stents performances toward encrustation after long-term indwelling in a dynamic in vitro model.
    Cauda V; Chiodoni A; Laurenti M; Canavese G; Tommasi T
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2244-2253. PubMed ID: 27459232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of urine flow through the side holes of a double J stent in a ureteral stenosis.
    Kim HH; Choi YH; Lee SB; Baba Y; Kim KW; Suh SH
    Technol Health Care; 2017 Jul; 25(S1):63-72. PubMed ID: 28582893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment.
    Yang G; Xie H; Huang Y; Lv Y; Zhang M; Shang Y; Zhou J; Wang L; Wang JY; Chen F
    J Biomater Appl; 2017 Mar; 31(8):1235-1244. PubMed ID: 28274192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New metallic ureteral stents: improved tensile strength and resistance to extrinsic compression.
    Hendlin K; Korman E; Monga M
    J Endourol; 2012 Mar; 26(3):271-4. PubMed ID: 22011000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Properties of Polyurethane Ureteral Stents with PLGA and Papaverine Hydrochloride Coating.
    Antonowicz M; Szewczenko J; Jaworska J; Jelonek K; Joszko K; Gzik-Zroska B; Nuckowski PM; Bryniarski P; Paszenda Z; Nakonieczny DS; Barabaszová KČ; Kasperczyk J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous ureteral stent fragmentation.
    Zisman A; Siegel YI; Siegmann A; Lindner A
    J Urol; 1995 Mar; 153(3 Pt 1):718-21. PubMed ID: 7861519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a chronic indwelling prototype mesh ureteral stent in a porcine model.
    Olweny EO; Portis AJ; Sundaram CP; Afane JS; Humphrey PA; Ewers R; McDougall EM; Clayman RV
    Urology; 2000 Nov; 56(5):857-62. PubMed ID: 11068323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wire-based ureteral stents: impact on tensile strength and compression.
    Pedro RN; Hendlin K; Kriedberg C; Monga M
    Urology; 2007 Dec; 70(6):1057-9. PubMed ID: 18158013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A resorbable bicomponent braided ureteral stent with improved mechanical performance.
    Zou T; Wang L; Li W; Wang W; Chen F; King MW
    J Mech Behav Biomed Mater; 2014 Oct; 38():17-25. PubMed ID: 24997428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo assessment of a novel biodegradable ureteral stent.
    Barros AA; Oliveira C; Ribeiro AJ; Autorino R; Reis RL; Duarte ARC; Lima E
    World J Urol; 2018 Feb; 36(2):277-283. PubMed ID: 29128964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technology insight: Novel ureteral stent materials and designs.
    Chew BH; Denstedt JD
    Nat Clin Pract Urol; 2004 Nov; 1(1):44-8. PubMed ID: 16474466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile properties of soft contact lens materials.
    Tranoudis I; Efron N
    Cont Lens Anterior Eye; 2004 Dec; 27(4):177-91. PubMed ID: 16303541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a model for assessment of biomaterial encrustation in the upper urinary tract.
    Tunney MM; Bonner MC; Keane PF; Gorman SP
    Biomaterials; 1996 May; 17(10):1025-9. PubMed ID: 8736739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle Accumulation in Ureteral Stents Is Governed by Fluid Dynamics: In Vitro Study Using a "Stent-on-Chip" Model.
    Mosayyebi A; Yue QY; Somani BK; Zhang X; Manes C; Carugo D
    J Endourol; 2018 Jul; 32(7):639-646. PubMed ID: 29699424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.