These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 9363338)
1. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo. Gorman SP; Jones DS; Bonner MC; Akay M; Keane PF Biomaterials; 1997 Oct; 18(20):1379-83. PubMed ID: 9363338 [TBL] [Abstract][Full Text] [Related]
2. Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial. Gorman SP; Tunney MM; Keane PF; Van Bladel K; Bley B J Biomed Mater Res; 1998 Mar; 39(4):642-9. PubMed ID: 9492227 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. Jin L; Yao L; Yuan F; Dai G; Xue B J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):665-672. PubMed ID: 32929829 [TBL] [Abstract][Full Text] [Related]
5. Fracture of polyurethane double pigtail stents: an in vivo retrospective and prospective fluoroscopic study. el-Sherif A Br J Urol; 1995 Jul; 76(1):108-14. PubMed ID: 7648041 [TBL] [Abstract][Full Text] [Related]
6. Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: mechanical properties and comparative resistance to urinary encrustation. Jones DS; Bonner MC; Gorman SP; Akay M; Keane PF J Mater Sci Mater Med; 1997 Nov; 8(11):713-7. PubMed ID: 15348824 [TBL] [Abstract][Full Text] [Related]
7. Ureteral double-J stents performances toward encrustation after long-term indwelling in a dynamic in vitro model. Cauda V; Chiodoni A; Laurenti M; Canavese G; Tommasi T J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2244-2253. PubMed ID: 27459232 [TBL] [Abstract][Full Text] [Related]
8. Numerical analysis of urine flow through the side holes of a double J stent in a ureteral stenosis. Kim HH; Choi YH; Lee SB; Baba Y; Kim KW; Suh SH Technol Health Care; 2017 Jul; 25(S1):63-72. PubMed ID: 28582893 [TBL] [Abstract][Full Text] [Related]
9. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment. Yang G; Xie H; Huang Y; Lv Y; Zhang M; Shang Y; Zhou J; Wang L; Wang JY; Chen F J Biomater Appl; 2017 Mar; 31(8):1235-1244. PubMed ID: 28274192 [TBL] [Abstract][Full Text] [Related]
10. New metallic ureteral stents: improved tensile strength and resistance to extrinsic compression. Hendlin K; Korman E; Monga M J Endourol; 2012 Mar; 26(3):271-4. PubMed ID: 22011000 [TBL] [Abstract][Full Text] [Related]
14. Wire-based ureteral stents: impact on tensile strength and compression. Pedro RN; Hendlin K; Kriedberg C; Monga M Urology; 2007 Dec; 70(6):1057-9. PubMed ID: 18158013 [TBL] [Abstract][Full Text] [Related]
15. A resorbable bicomponent braided ureteral stent with improved mechanical performance. Zou T; Wang L; Li W; Wang W; Chen F; King MW J Mech Behav Biomed Mater; 2014 Oct; 38():17-25. PubMed ID: 24997428 [TBL] [Abstract][Full Text] [Related]
16. In vivo assessment of a novel biodegradable ureteral stent. Barros AA; Oliveira C; Ribeiro AJ; Autorino R; Reis RL; Duarte ARC; Lima E World J Urol; 2018 Feb; 36(2):277-283. PubMed ID: 29128964 [TBL] [Abstract][Full Text] [Related]
19. Development of a model for assessment of biomaterial encrustation in the upper urinary tract. Tunney MM; Bonner MC; Keane PF; Gorman SP Biomaterials; 1996 May; 17(10):1025-9. PubMed ID: 8736739 [TBL] [Abstract][Full Text] [Related]
20. Particle Accumulation in Ureteral Stents Is Governed by Fluid Dynamics: In Vitro Study Using a "Stent-on-Chip" Model. Mosayyebi A; Yue QY; Somani BK; Zhang X; Manes C; Carugo D J Endourol; 2018 Jul; 32(7):639-646. PubMed ID: 29699424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]