These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9363366)

  • 1. Inhibition of K+ transport in human sickle cell erythrocytes by okadaic acid and sodium fluoride.
    al-Rohil Gharaibeh NS; al-Sheyyab M
    Clin Exp Pharmacol Physiol; 1997 Nov; 24(11):841-3. PubMed ID: 9363366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide.
    Jennings ML; Schulz RK
    J Gen Physiol; 1991 Apr; 97(4):799-817. PubMed ID: 1647439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-ethylmaliemide (NEM)-stimulated passive potassium transport in camel erythrocytes: inhibitory effects of age, furosemide, sodium fluoride and okadaic acid.
    Gharaibeh NS
    Vet J; 1999 Jan; 157(1):57-60. PubMed ID: 10030129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of protein phosphatase in activation of KCl cotransport in human erythrocytes.
    Kaji DM; Tsukitani Y
    Am J Physiol; 1991 Jan; 260(1 Pt 1):C176-80. PubMed ID: 1846271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxygenation of sickle red blood cells stimulates KCl cotransport without affecting Na+/H+ exchange.
    Joiner CH; Jiang M; Fathallah H; Giraud F; Franco RS
    Am J Physiol; 1998 Jun; 274(6):C1466-75. PubMed ID: 9696688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport.
    Adorante JS; Cala PM
    J Gen Physiol; 1987 Aug; 90(2):209-27. PubMed ID: 3655717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells.
    al-Rohil N; Jennings ML
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C114-21. PubMed ID: 2750884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.
    Shmukler BE; Hsu A; Alves J; Trudel M; Rust MB; Hubner CA; Rivera A; Alper SL
    Blood Cells Mol Dis; 2013 Jun; 51(1):9-16. PubMed ID: 23481459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A.
    Ivanova TI; Agalakova NI; Gusev GP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):60-7. PubMed ID: 16875859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Okadaic acid inhibits activation of K-Cl cotransport in red blood cells containing hemoglobins S and C.
    Orringer EP; Brockenbrough JS; Whitney JA; Glosson PS; Parker JC
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C591-3. PubMed ID: 1656766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of human erythrocyte K-Cl cotransport and protein phosphatase type 2A by n-ethylmaleimide: role of intracellular Mg++.
    Bize I; Güvenç B; Buchbinder G; Brugnara C
    J Membr Biol; 2000 Sep; 177(2):159-68. PubMed ID: 11003690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K-Cl cotransport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-domain-truncated KCC1 cDNAs.
    Lauf PK; Zhang J; Gagnon KB; Delpire E; Fyffe RE; Adragna NC
    Cell Physiol Biochem; 2001; 11(3):143-60. PubMed ID: 11410710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swelling-stimulated passive potassium transport in camel erythrocytes: inhibitory effects of furosemide and sodium fluoride.
    Gharaibeh NS; Rawashdeh NM
    Membr Biochem; 1993; 10(3):181-7. PubMed ID: 8231901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol-dependent passive K: Cl transport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM.
    Zade-Oppen AM; Lauf PK
    J Membr Biol; 1990 Nov; 118(2):143-51. PubMed ID: 2266545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1.
    Starke LC; Jennings ML
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C118-24. PubMed ID: 8381587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of hemoglobin A and S on the volume- and pH-dependence of K-Cl cotransport in human erythrocyte ghosts.
    Vitoux D; Beuzard Y; Brugnara C
    J Membr Biol; 1999 Feb; 167(3):233-40. PubMed ID: 9929375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation transport in oxidant-stressed human erythrocytes: heightened N-ethylmaleimide activation of passive K+ influx after mild peroxidation.
    Sheerin HE; Snyder LM; Fairbanks G
    Biochim Biophys Acta; 1989 Jul; 983(1):65-76. PubMed ID: 2758051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K(86Rb) transport heterogeneity in the low-density fraction of sickle cell anemia red blood cells.
    Etzion Z; Lew VL; Bookchin RM
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1111-21. PubMed ID: 8897817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells.
    Kramhøft B; Lambert IH; Hoffmann EK; Jørgensen F
    Am J Physiol; 1986 Sep; 251(3 Pt 1):C369-79. PubMed ID: 3092674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.