These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mutational studies of the amino acid residues in the combining site of Erythrina corallodendron lectin. Adar R; Sharon N Eur J Biochem; 1996 Aug; 239(3):668-74. PubMed ID: 8774711 [TBL] [Abstract][Full Text] [Related]
5. Structural features of the combining site region of Erythrina corallodendron lectin: role of tryptophan 135. Adar R; Moreno E; Streicher H; Karlsson KA; Angström J; Sharon N Protein Sci; 1998 Jan; 7(1):52-63. PubMed ID: 9514259 [TBL] [Abstract][Full Text] [Related]
6. Modification by site-directed mutagenesis of the specificity of Erythrina corallodendron lectin for galactose derivatives with bulky substituents at C-2. Arango R; Rodriguez-Arango E; Adar R; Belenky D; Loontiens FG; Rozenblatt S; Sharon N FEBS Lett; 1993 Sep; 330(2):133-6. PubMed ID: 8365483 [TBL] [Abstract][Full Text] [Related]
7. The 2.15 A crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin. Varela PF; Solís D; Díaz-Mauriño T; Kaltner H; Gabius HJ; Romero A J Mol Biol; 1999 Nov; 294(2):537-49. PubMed ID: 10610778 [TBL] [Abstract][Full Text] [Related]
8. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose. Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338 [TBL] [Abstract][Full Text] [Related]
9. Redefinition of the carbohydrate specificity of Erythrina corallodendron lectin based on solid-phase binding assays and molecular modeling of native and recombinant forms obtained by site-directed mutagenesis. Moreno E; Teneberg S; Adar R; Sharon N; Karlsson KA; Angström J Biochemistry; 1997 Apr; 36(15):4429-37. PubMed ID: 9109650 [TBL] [Abstract][Full Text] [Related]
10. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. Hirabayashi J; Kasai K J Biol Chem; 1991 Dec; 266(35):23648-53. PubMed ID: 1721052 [TBL] [Abstract][Full Text] [Related]
11. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Henrick K; Bawumia S; Barboni EA; Mehul B; Hughes RC Glycobiology; 1998 Jan; 8(1):45-57. PubMed ID: 9451013 [TBL] [Abstract][Full Text] [Related]
12. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data. Svensson C; Teneberg S; Nilsson CL; Kjellberg A; Schwarz FP; Sharon N; Krengel U J Mol Biol; 2002 Aug; 321(1):69-83. PubMed ID: 12139934 [TBL] [Abstract][Full Text] [Related]
13. Role of glycosylation in structure and stability of Erythrina corallodendron lectin (EcorL): a molecular dynamics study. Kaushik S; Mohanty D; Surolia A Protein Sci; 2011 Mar; 20(3):465-81. PubMed ID: 21432931 [TBL] [Abstract][Full Text] [Related]
15. Conformer selection and differential restriction of ligand mobility by a plant lectin--conformational behaviour of Galbeta1-3GlcNAcbeta1-R, Galbeta1-3GalNAcbeta1-R and Galbeta1-2Galbeta1-R' in the free state and complexed with galactoside-specific mistletoe lectin as revealed by random-walk and conformational-clustering molecular-mechanics. Gilleron M; Siebert HC; Kaltner H; von der Lieth CW; Kozár T; Halkes KM; Korchagina EY; Bovin NV; Gabius HJ; Vliegenthart JF Eur J Biochem; 1998 Mar; 252(3):416-27. PubMed ID: 9546657 [TBL] [Abstract][Full Text] [Related]
16. NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Alonso-Plaza JM; Canales MA; Jiménez M; Roldán JL; García-Herrero A; Iturrino L; Asensio JL; Cañada FJ; Romero A; Siebert HC; André S; Solís D; Gabius HJ; Jiménez-Barbero J Biochim Biophys Acta; 2001 Dec; 1568(3):225-36. PubMed ID: 11786229 [TBL] [Abstract][Full Text] [Related]
17. Photo-CIDNP NMR spectroscopy of amino acids and proteins. Kuhn LT Top Curr Chem; 2013; 338():229-300. PubMed ID: 23670104 [TBL] [Abstract][Full Text] [Related]
18. Further evidence by site-directed mutagenesis that conserved hydrophilic residues form a carbohydrate-binding site of human galectin-1. Hirabayashi J; Kasai K Glycoconj J; 1994 Oct; 11(5):437-42. PubMed ID: 7535135 [TBL] [Abstract][Full Text] [Related]
19. Three dimensional structure of the soybean agglutinin Gal/GalNAc complexes by homology modeling. Rao VS; Lam K; Qasba PK J Biomol Struct Dyn; 1998 Apr; 15(5):853-60. PubMed ID: 9619508 [TBL] [Abstract][Full Text] [Related]
20. Galectin-1 from ovine placenta--amino-acid sequence, physicochemical properties and implications in T-cell death. Iglesias MM; Rabinovich GA; Ivanovic V; Sotomayor C; Wolfenstein-Todel C Eur J Biochem; 1998 Mar; 252(3):400-7. PubMed ID: 9546655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]