BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9363766)

  • 21. Electron spin echo envelope modulation evidence for carbonate binding to iron(III) and copper(II) transferrin and lactoferrin.
    Eaton SS; Dubach J; Eaton GR; Thurman G; Ambruso DR
    J Biol Chem; 1990 May; 265(13):7138-41. PubMed ID: 2158987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactoferrin and iron: structural and dynamic aspects of binding and release.
    Baker HM; Baker EN
    Biometals; 2004 Jun; 17(3):209-16. PubMed ID: 15222467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protonation and anion binding control the kinetics of iron release from human transferrin.
    Kumar R; Mauk AG
    J Phys Chem B; 2012 Mar; 116(12):3795-807. PubMed ID: 22364386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro interaction between ceruloplasmin and human serum transferrin.
    Ha-Duong NT; Eid C; Hémadi M; El Hage Chahine JM
    Biochemistry; 2010 Dec; 49(48):10261-3. PubMed ID: 21049900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin.
    Tachezy J; Kulda J; Bahníková I; Suchan P; Rázga J; Schrével J
    Exp Parasitol; 1996 Jul; 83(2):216-28. PubMed ID: 8682190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The involvement of bicarbonate in the binding of iron by transferrin.
    Van Snick JL; Masson PL; Heremans JF
    Biochim Biophys Acta; 1973 Oct; 322(2):231-3. PubMed ID: 4784877
    [No Abstract]   [Full Text] [Related]  

  • 27. The mechanism of iron release from the transferrin-receptor 1 adduct.
    Hémadi M; Ha-Duong NT; El Hage Chahine JM
    J Mol Biol; 2006 May; 358(4):1125-36. PubMed ID: 16564538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic digestion.
    Brines RD; Brock JH
    Biochim Biophys Acta; 1983 Sep; 759(3):229-35. PubMed ID: 6349699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The bicarbonate-dependence of zinc(II)-transferrin binding.
    Harris WR; Stenback JZ
    J Inorg Biochem; 1988 Jul; 33(3):211-23. PubMed ID: 2843602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative oxidations of tyrosines and methionines in transferrins: human serum transferrin, human lactotransferrin, and chicken ovotransferrin.
    Penner MH; Yamasaki RB; Osuga DT; Babin DR; Meares CF; Feeney RE
    Arch Biochem Biophys; 1983 Sep; 225(2):740-7. PubMed ID: 6312890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of apolactoferrin with a very low iron saturation.
    Feng M; van der Does L; Bantjes A
    J Dairy Sci; 1995 Nov; 78(11):2352-7. PubMed ID: 8747325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of transferrin with rat alveolar macrophages.
    Janicka M; Regoeczi E; Bolyos M; Hu WL
    Biochem Cell Biol; 1995; 73(1-2):73-9. PubMed ID: 7662318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of lactoferrin and lipopolysaccharide (LPS): effects on the antioxidant property of lactoferrin and the ability of LPS to prime human neutrophils for enhanced superoxide formation.
    Cohen MS; Mao J; Rasmussen GT; Serody JS; Britigan BE
    J Infect Dis; 1992 Dec; 166(6):1375-8. PubMed ID: 1331250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interaction of anions with native and phenylglyoxal-modified human serum transferrin.
    Penner MH; Osuga DT; Meares CF; Feeney RE
    Arch Biochem Biophys; 1987 Jan; 252(1):7-14. PubMed ID: 3028261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferrin's mechanism of interaction with receptor 1.
    Hémadi M; Kahn PH; Miquel G; El Hage Chahine JM
    Biochemistry; 2004 Feb; 43(6):1736-45. PubMed ID: 14769051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of inorganic anions on the formation and stability of Fe3+-transferrin-anion complexes.
    Foley AA; Bates GW
    Biochim Biophys Acta; 1988 May; 965(2-3):154-62. PubMed ID: 2835112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An estrogen inducible 104 kDa chaperone glycoprotein binds ferric iron containing proteins: a possible role in intracellular iron trafficking.
    Poola I
    FEBS Lett; 1997 Oct; 416(2):139-42. PubMed ID: 9369199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Periodate modification of human serum transferrin Fe(III)-binding sites. Inhibition of carbonate insertion into Fe(III)- and Cu(II)-chelator-transferrin ternary complexes.
    Ross DC; Egan TJ; Purves LR
    J Biol Chem; 1995 May; 270(21):12404-10. PubMed ID: 7759481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prooxidant activity of transferrin and lactoferrin.
    Klebanoff SJ; Waltersdorph AM
    J Exp Med; 1990 Nov; 172(5):1293-303. PubMed ID: 2230644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the electron spin echo envelope modulation (ESEEM) for human lactoferrin and transferrin complexes of copper(II) and vanadyl ion.
    Eaton SS; Dubach J; More KM; Eaton GR; Thurman G; Ambruso DR
    J Biol Chem; 1989 Mar; 264(9):4776-81. PubMed ID: 2538460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.