These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 9363769)
1. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Arnold D; Keilholz W; Schild H; Dumrese T; Stevanović S; Rammensee HG Eur J Biochem; 1997 Oct; 249(1):171-9. PubMed ID: 9363769 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary conserved cathepsin E substrate specificity as defined by N-terminal and C-terminal sequencing of peptide pools. Arnold D; Keilholz W; Schild H; Dumrese T; Stevanović S; Rammensee HG Biol Chem; 1997 Aug; 378(8):883-91. PubMed ID: 9377485 [TBL] [Abstract][Full Text] [Related]
3. Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain. Rückrich T; Brandenburg J; Cansier A; Müller M; Stevanović S; Schilling K; Wiederanders B; Beck A; Melms A; Reich M; Driessen C; Kalbacher H Biol Chem; 2006; 387(10-11):1503-11. PubMed ID: 17081125 [TBL] [Abstract][Full Text] [Related]
4. Potential sites for processing of the human invariant chain by cathepsins D and E. Kageyama T; Yonezawa S; Ichinose M; Miki K; Moriyama A Biochem Biophys Res Commun; 1996 Jun; 223(3):549-53. PubMed ID: 8687433 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of cathepsins D and G and EC 3.4.24.15 as candidate beta-secretase proteases using peptide and amyloid precursor protein substrates. Brown AM; Tummolo DM; Spruyt MA; Jacobsen JS; Sonnenberg-Reines J J Neurochem; 1996 Jun; 66(6):2436-45. PubMed ID: 8632167 [TBL] [Abstract][Full Text] [Related]
6. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. Yasuda Y; Kageyama T; Akamine A; Shibata M; Kominami E; Uchiyama Y; Yamamoto K J Biochem; 1999 Jun; 125(6):1137-43. PubMed ID: 10348917 [TBL] [Abstract][Full Text] [Related]
7. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Chang JY Eur J Biochem; 1985 Sep; 151(2):217-24. PubMed ID: 2863141 [TBL] [Abstract][Full Text] [Related]
8. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202 [TBL] [Abstract][Full Text] [Related]
9. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. Dunn AD; Crutchfield HE; Dunn JT J Biol Chem; 1991 Oct; 266(30):20198-204. PubMed ID: 1939080 [TBL] [Abstract][Full Text] [Related]
10. Determination of the P1', P2' and P3' subsite-specificity of factor Xa. Ludeman JP; Pike RN; Bromfield KM; Duggan PJ; Cianci J; Le Bonniec B; Whisstock JC; Bottomley SP Int J Biochem Cell Biol; 2003 Feb; 35(2):221-5. PubMed ID: 12479872 [TBL] [Abstract][Full Text] [Related]
11. A possible role for cathepsins D, E, and B in the processing of beta-amyloid precursor protein in Alzheimer's disease. Mackay EA; Ehrhard A; Moniatte M; Guenet C; Tardif C; Tarnus C; Sorokine O; Heintzelmann B; Nay C; Remy JM; Higaki J; Van Dorsselaer A; Wagner J; Danzin C; Mamont P Eur J Biochem; 1997 Mar; 244(2):414-25. PubMed ID: 9119007 [TBL] [Abstract][Full Text] [Related]
12. Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases. Grüninger-Leitch F; Schlatter D; Küng E; Nelböck P; Döbeli H J Biol Chem; 2002 Feb; 277(7):4687-93. PubMed ID: 11741910 [TBL] [Abstract][Full Text] [Related]
13. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity. Andersson MK; Pemberton AD; Miller HR; Hellman L Mol Immunol; 2008 May; 45(9):2548-58. PubMed ID: 18313755 [TBL] [Abstract][Full Text] [Related]
14. Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: implications for T cell epitope generation. Hewitt EW; Treumann A; Morrice N; Tatnell PJ; Kay J; Watts C J Immunol; 1997 Nov; 159(10):4693-9. PubMed ID: 9366392 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity of porcine renin: P1', P1, and P3 residues of renin substrates are crucial for activity. Wang W; Liang TC Biochemistry; 1994 Dec; 33(48):14636-41. PubMed ID: 7981226 [TBL] [Abstract][Full Text] [Related]
17. Hydrolytic specificity of the barley grain aspartic proteinase. Kervinen J; Sarkkinen P; Kalkkinen N; Mikola L; Saarma M Phytochemistry; 1993 Mar; 32(4):799-803. PubMed ID: 7763475 [TBL] [Abstract][Full Text] [Related]
18. Cleavage specificity of the subtilisin-like protease C1 from soybean. Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608 [TBL] [Abstract][Full Text] [Related]
19. Quantifying cathepsin S activity in antigen presenting cells using a novel specific substrate. Lützner N; Kalbacher H J Biol Chem; 2008 Dec; 283(52):36185-94. PubMed ID: 18957408 [TBL] [Abstract][Full Text] [Related]
20. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. Biniossek ML; Nägler DK; Becker-Pauly C; Schilling O J Proteome Res; 2011 Dec; 10(12):5363-73. PubMed ID: 21967108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]