BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9363795)

  • 1. Effect of TAK-147, a novel AChE inhibitor, on cerebral energy metabolism.
    Nakayama T; Takahashi H; Miyamoto M; Goto G; Nagai Y
    Neurobiol Aging; 1996; 17(6):849-57. PubMed ID: 9363795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acetyl-L-carnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat--study by 13P- and 1H-NMR spectroscopy.
    Aureli T; Miccheli A; Di Cocco ME; Ghirardi O; Giuliani A; Ramacci MT; Conti F
    Brain Res; 1994 Apr; 643(1-2):92-9. PubMed ID: 8032936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical effects of 3-[1-(phenylmethyl)-4-piperidinyl]-1-(2,3,4,5-tetrahydro-1H-1-b enzazepin-8-yl)-1-propanone fumarate (TAK-147), a novel acetylcholinesterase inhibitor, in rats.
    Hirai K; Kato K; Nakayama T; Hayako H; Ishihara Y; Goto G; Miyamoto M
    J Pharmacol Exp Ther; 1997 Mar; 280(3):1261-9. PubMed ID: 9067312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allopurinol preserves cerebral energy metabolism during perinatal hypoxia-ischemia: a 31P NMR study in unanesthetized immature rats.
    Williams GD; Palmer C; Heitjan DF; Smith MB
    Neurosci Lett; 1992 Sep; 144(1-2):103-6. PubMed ID: 1436687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of metrifonate, a cholinesterase inhibitor, on local cerebral glucose utilization in young and aged rats.
    Bassant MH; Jazat-Poindessous F; Lamour Y
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1014-25. PubMed ID: 8784247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants.
    Gupta RC; Milatovic D; Dettbarn WD
    Neurotoxicology; 2001 Apr; 22(2):271-82. PubMed ID: 11405258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study.
    Biessels GJ; Braun KP; de Graaf RA; van Eijsden P; Gispen WH; Nicolay K
    Diabetologia; 2001 Mar; 44(3):346-53. PubMed ID: 11317667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate.
    Lyoo IK; Kong SW; Sung SM; Hirashima F; Parow A; Hennen J; Cohen BM; Renshaw PF
    Psychiatry Res; 2003 Jun; 123(2):87-100. PubMed ID: 12850248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy reserves and utilization rates in developing brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy.
    Corbett RJ; Laptook AR; Garcia D; Ruley JI
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):235-46. PubMed ID: 8436615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal evolution of regional energy metabolism following focal cerebral ischemia in the rat.
    Nowicki JP; Assumel-Lurdin C; Duverger D; MacKenzie ET
    J Cereb Blood Flow Metab; 1988 Aug; 8(4):462-73. PubMed ID: 3392111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study.
    Germano IM; Pitts LH; Berry I; De Armond SJ
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats.
    Andrews BT; Weinstein PR; Keniry M; Pereira B
    Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local cerebral glucose utilization in the brain of old, learning impaired rats.
    Wree A; Kaever C; Birgel B; Schleicher A; Horvath E; Zilles K
    Histochemistry; 1991; 95(6):591-603. PubMed ID: 1856113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naloxone fails to alter local cerebral glucose utilization in the rat.
    Fanelli RJ; Walovitch RC; Jasinski DR; London ED
    Pharmacol Biochem Behav; 1988 Oct; 31(2):481-5. PubMed ID: 3244723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arecoline-induced elevations of regional cerebral metabolism in the conscious rat.
    Soncrant TT; Holloway HW; Rapoport SI
    Brain Res; 1985 Nov; 347(2):205-16. PubMed ID: 4063806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral metabolic effects of organophosphorus anticholinesterase compounds.
    Miller AL; Medina MA
    Metab Brain Dis; 1986 Jun; 1(2):147-56. PubMed ID: 3508239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic response to tacrine (THA) and physostigmine in the aged rat brain.
    Bassant MH; Jazat-Poindessous F; Lamour Y
    J Cereb Blood Flow Metab; 1995 Nov; 15(6):1093-102. PubMed ID: 7593342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of subchronic metrifonate treatment on cerebral glucose metabolism in young and aged rats.
    Poindessous-Jazat F; Schmidt BH; Bassant MH
    Eur J Pharmacol; 1998 Dec; 363(1):17-28. PubMed ID: 9877077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAK-147, an acetylcholinesterase inhibitor, increases choline acetyltransferase activity in cultured rat septal cholinergic neurons.
    Kato K; Hayako H; Ishihara Y; Marui S; Iwane M; Miyamoto M
    Neurosci Lett; 1999 Jan; 260(1):5-8. PubMed ID: 10027686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of propentofylline on energy metabolism of the ischemic brain studied by in vivo 31P nuclear magnetic resonance spectroscopy.
    Sasaki M; Naritomi H; Kanashiro M; Nishimura H; Sawada T
    Arzneimittelforschung; 1989 Aug; 39(8):886-9. PubMed ID: 2510744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.