BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9365958)

  • 21. Substance removal on teeth with and without calculus using 308 nm XeCl excimer laser radiation. An in vitro investigation.
    Folwaczny M; Mehl A; Haffner C; Hickel R
    J Clin Periodontol; 1999 May; 26(5):306-12. PubMed ID: 10355622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between surface topography and energy density distribution of Er,Cr:YSGG beam on irradiated dentin: an atomic force microscopy study.
    Botta SB; Ana PA; de Sa Teixeira F; da Silveira Salvadori MC; Matos AB
    Photomed Laser Surg; 2011 Apr; 29(4):261-9. PubMed ID: 21219230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permanent and transient changes in the reflectance of CO2 laser-irradiated dental hard tissues at lambda = 9.3, 9.6, 10.3, and 10.6 microns and at fluences of 1-20 J/cm2.
    Fried D; Glena RE; Featherstone JD; Seka W
    Lasers Surg Med; 1997; 20(1):22-31. PubMed ID: 9041504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological changes of rat mandibular bone with ArF excimer laser in vivo.
    Nakamura Y; Hossain M; Watanabe H; Tokonabe H; Matsumoto N; Matsumoto K
    J Clin Laser Med Surg; 1999; 17(4):145-9. PubMed ID: 11199836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physico-chemical changes of human enamel irradiated with ArF excimer laser.
    Feuerstein O; Mayer I; Deutsch D
    Lasers Surg Med; 2005 Sep; 37(3):245-51. PubMed ID: 16175633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Er:YAG laser ablation of enamel and dentin of human teeth: determination of ablation rates at various fluences and pulse repetition rates.
    Li ZZ; Code JE; Van De Merwe WP
    Lasers Surg Med; 1992; 12(6):625-30. PubMed ID: 1453865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of CO2, Nd:YAG, and ArF excimer lasers on dentin morphology and pulp chamber temperature: an in vitro study.
    Türkmen C; Günday M; Karaçorlu M; Başaran B
    J Endod; 2000 Nov; 26(11):644-8. PubMed ID: 11469292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at lambda=9.3 micro.
    Fan K; Bell P; Fried D
    J Biomed Opt; 2006; 11(6):064008. PubMed ID: 17212531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suitable conditions for sealing of open dentinal tubules using a pulsed Nd:YAG laser.
    Zapletalová Z; Perina J; Novotný R; Chmelícková H
    Photomed Laser Surg; 2007 Dec; 25(6):495-9. PubMed ID: 18158751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of CO2 laser on pulpal temperature and surface morphology: an in vitro study.
    Malmström HS; McCormack SM; Fried D; Featherstone JD
    J Dent; 2001 Nov; 29(8):521-9. PubMed ID: 11700201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of phase, microstructure and composition of human dentine after Er,Cr:YSGG laser irradiation.
    Lin S; Pan D; Lin Q; Yin S; Chen D; Liu Q; Yu L; Lin Z
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2421-6. PubMed ID: 21449402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ti:sapphire femtosecond laser ablation of dental enamel, dentine, and cementum.
    Ji L; Li L; Devlin H; Liu Z; Jiao J; Whitehead D
    Lasers Med Sci; 2012 Jan; 27(1):197-204. PubMed ID: 21611745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Basic considerations on the use of the Excimer laser in dentistry].
    Liesenhoff T; Bende T; Lenz H; Seiler T
    Dtsch Zahnarztl Z; 1990 Jan; 45(1):14-6. PubMed ID: 2257793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Nd:YAG laser irradiation on an adhesive restorative procedure.
    Franke M; Taylor AW; Lago A; Fredel MC
    Oper Dent; 2006; 31(5):604-9. PubMed ID: 17024950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of nanosecond pulsed Nd: YAG laser irradiation on dentin resistance to artificial caries-like lesions.
    Kimura Y; Wilder-Smith P; Arrastia-Jitosho AM; Liaw LH; Matsumoto K; Berns MW
    Lasers Surg Med; 1997; 20(1):15-21. PubMed ID: 9041503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of super short pulse Er:YAG laser on human dentin--Scanning electron microscopy analysis.
    Trevelin LT; Marques MM; Aranha AC; Arana-Chavez VE; Matos AB
    Microsc Res Tech; 2015 Jun; 78(6):472-8. PubMed ID: 25829249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a 532 nm Q-switched nanosecond pulsed laser on dentin.
    Arrastia-Jitosho AM; Liaw LH; Lee W; Wilder-Smith P
    J Endod; 1998 Jun; 24(6):427-31. PubMed ID: 9693588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.
    Chang NN; Jew JM; Simon JC; Chen KH; Lee RC; Fried WA; Cho J; Darling CL; Fried D
    Lasers Surg Med; 2017 Dec; 49(10):913-927. PubMed ID: 28699676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective targeting of protein, water, and mineral in dentin using UV and IR pulse lasers: the effect on the bond strength to composite restorative materials.
    Sheth KK; Staninec M; Sarma AV; Fried D
    Lasers Surg Med; 2004; 35(4):245-53. PubMed ID: 15493023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation.
    Lizarelli RF; Kurachi C; Misoguti L; Bagnato VS
    J Clin Laser Med Surg; 1999 Jun; 17(3):127-31. PubMed ID: 11199832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.