These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural similarities in glucoamylase by hydrophobic cluster analysis. Coutinho PM; Reilly PJ Protein Eng; 1994 Jun; 7(6):749-60. PubMed ID: 7937705 [TBL] [Abstract][Full Text] [Related]
3. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Williamson G; Belshaw NJ; Williamson MP Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):423-8. PubMed ID: 1546955 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related]
5. Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. Jørgensen AD; Nøhr J; Kastrup JS; Gajhede M; Sigurskjold BW; Sauer J; Svergun DI; Svensson B; Vestergaard B J Biol Chem; 2008 May; 283(21):14772-80. PubMed ID: 18378674 [TBL] [Abstract][Full Text] [Related]
6. Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Coutinho PM; Reilly PJ Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
8. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J; Christensen T; Frandsen TP; Mirgorodskaya E; McGuire KA; Driguez H; Roepstorff P; Sigurskjold BW; Svensson B Biochemistry; 2001 Aug; 40(31):9336-46. PubMed ID: 11478902 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulations of the unfolding of the starch binding domain from Aspergillus niger glucoamylase. Liu HL; Wang WC J Biomol Struct Dyn; 2003 Apr; 20(5):615-22. PubMed ID: 12643764 [TBL] [Abstract][Full Text] [Related]
10. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ; Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Eur J Biochem; 1995 Oct; 233(2):568-78. PubMed ID: 7588803 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
12. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Tanaka A; Karita S; Kosuge Y; Senoo K; Obata H; Kitamoto N Biosci Biotechnol Biochem; 1998 Nov; 62(11):2127-32. PubMed ID: 9972233 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Structure; 1997 May; 5(5):647-61. PubMed ID: 9195884 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger. Suyama Y; Muraki N; Kusunoki M; Miyake H Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):550-554. PubMed ID: 28994402 [TBL] [Abstract][Full Text] [Related]
15. Glucoamylase: structure/function relationships, and protein engineering. Sauer J; Sigurskjold BW; Christensen U; Frandsen TP; Mirgorodskaya E; Harrison M; Roepstorff P; Svensson B Biochim Biophys Acta; 2000 Dec; 1543(2):275-293. PubMed ID: 11150611 [TBL] [Abstract][Full Text] [Related]
16. O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Williamson G; Belshaw NJ; Noel TR; Ring SG; Williamson MP Eur J Biochem; 1992 Jul; 207(2):661-70. PubMed ID: 1633817 [TBL] [Abstract][Full Text] [Related]
17. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802 [TBL] [Abstract][Full Text] [Related]
18. Isolation and sequencing of a new glucoamylase gene from an Aspergillus niger aggregate strain (DSM 823) molecularly classified as Aspergillus tubingensis. Manger-Jacob F; Müller T; Janssen M; Höfer M; Hölker U Antonie Van Leeuwenhoek; 2005; 88(3-4):267-75. PubMed ID: 16284933 [TBL] [Abstract][Full Text] [Related]
19. Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger. Liu Y; Meng Z; Shi R; Zhan L; Hu W; Xiang H; Xie Q J Microbiol Biotechnol; 2015 Jan; 25(1):33-43. PubMed ID: 25179903 [TBL] [Abstract][Full Text] [Related]
20. Structure of the catalytic domain of glucoamylase from Aspergillus niger. Lee J; Paetzel M Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Feb; 67(Pt 2):188-92. PubMed ID: 21301084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]