These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 9366963)

  • 1. Metabolite accumulation increases adenine nucleotide degradation and decreases glycogenolysis in ischaemic rat skeletal muscle.
    Welsh DG; Lindinger MI
    Acta Physiol Scand; 1997 Oct; 161(2):203-10. PubMed ID: 9366963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion.
    Welsh DG; Lindinger MI
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro- and macroglycogenolysis in contracting rat skeletal muscle.
    Derave W; Gao S; Richter EA
    Acta Physiol Scand; 2000 Aug; 169(4):291-6. PubMed ID: 10951120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles.
    Egginton S; Hudlická O
    Exp Physiol; 2000 Sep; 85(5):567-73. PubMed ID: 11038408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism of rat skeletal muscle modulated by the rate of perfusion flow.
    Stefl B; Mejsnar JA; Janovská A
    Exp Physiol; 1999 Jul; 84(4):651-63. PubMed ID: 10481223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle.
    Dawson KD; Baker DJ; Greenhaff PL; Gibala MJ
    J Physiol; 2005 Jun; 565(Pt 2):637-43. PubMed ID: 15802296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle energy metabolism during prolonged, fatiguing exercise.
    Febbraio MA; Dancey J
    J Appl Physiol (1985); 1999 Dec; 87(6):2341-7. PubMed ID: 10601187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and contractile responses of fast- and slow-twitch rat skeletal muscles to ischemia.
    Carvalho AJ; McKee NH; Green HJ
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1333-41. PubMed ID: 9047044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide degradation in slow-twitch red muscle.
    Tullson PC; Whitlock DM; Terjung RL
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C258-65. PubMed ID: 2305868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purine salvage to adenine nucleotides in different skeletal muscle fiber types.
    Brault JJ; Terjung RL
    J Appl Physiol (1985); 2001 Jul; 91(1):231-8. PubMed ID: 11408435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Controlled reperfusion of the extremities for preventing local and systemic damage after prolonged ischemia. An experimental study with the swine model].
    Mitrev Z; Ihnken K; Poloczek Y; Hallmann R; Herold H; Unkelbach U; Zimmer G; Freisleben HJ; Beyersdorf S; Beyersdorf F
    Zentralbl Chir; 1996; 121(9):774-87. PubMed ID: 9012238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reperfusion injury in skeletal muscle: controlled limb reperfusion reduces local and systemic complications after prolonged ischaemia.
    Mitrev Z; Beyersdorf F; Hallmann R; Poloczek Y; Ihnken K; Herold H; Unkelbach U; Zimmer G; Freisleben HJ; Satter P
    Cardiovasc Surg; 1994 Dec; 2(6):737-48. PubMed ID: 7858992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protecting the cellular energy state during contractions: role of AMP deaminase.
    Hancock CR; Brault JJ; Terjung RL
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of glycogen phosphorylase by electrical stimulation of isolated fast-twitch and slow-twitch muscles from rat.
    Chasiotis D; Edström L; Sahlin K; Sjöholm H
    Acta Physiol Scand; 1985 Jan; 123(1):43-7. PubMed ID: 3969833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of high FFA on glycogenolysis in oxidative rat hindlimb muscles during twitch stimulation.
    Dyck DJ; Peters SJ; Wendling PS; Spriet LL
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R766-76. PubMed ID: 8967406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease?
    Preisler N; Orngreen MC; Echaniz-Laguna A; Laforet P; Lonsdorfer-Wolf E; Doutreleau S; Geny B; Akman HO; Dimauro S; Vissing J
    Neurology; 2012 Jan; 78(4):265-8. PubMed ID: 22238410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.
    Baker DJ; Greenhaff PL; MacInnes A; Timmons JA
    Diabetes; 2006 Jun; 55(6):1855-61. PubMed ID: 16731853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glycogen breakdown by glycogen level in contracting rat muscle.
    Vandenberghe K; Richter EA; Hespel P
    Acta Physiol Scand; 1999 Mar; 165(3):307-14. PubMed ID: 10192181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.