These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9367047)

  • 1. Controller for an axial-flow blood pump.
    Amin DV; Antaki JF; Litwak P; Thomas D; Wu Z; Yu YC; Choi S; Boston JR; Griffith BP
    Biomed Instrum Technol; 1997; 31(5):483-7. PubMed ID: 9367047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suction detection for the MicroMed DeBakey Left Ventricular Assist Device.
    Voigt O; Benkowski RJ; Morello GF
    ASAIO J; 2005; 51(4):321-8. PubMed ID: 16156293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controller for an axial flow blood pump.
    Konishi H; Antaki JF; Amin DV; Boston JR; Kerrigan JP; Mandarino WA; Litwak P; Yamazaki K; Macha M; Butler KC; Borovetz HS; Kormos RL
    Artif Organs; 1996 Jun; 20(6):618-20. PubMed ID: 8817966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of suction and regurgitation of the implantable centrifugal pump based on the motor current waveform analysis and its application to optimization of pump flow.
    Yuhki A; Hatoh E; Nogawa M; Miura M; Shimazaki Y; Takatani S
    Artif Organs; 1999 Jun; 23(6):532-7. PubMed ID: 10392280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotary blood pump control strategy for preventing left ventricular suction.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(1):21-30. PubMed ID: 25248043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(2):170-7. PubMed ID: 25396276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specification of supervisory control systems for ventricular assist devices.
    Cavalheiro AC; Santos Fo DJ; Andrade A; Cardoso JR; Horikawa O; Bock E; Fonseca J
    Artif Organs; 2011 May; 35(5):465-70. PubMed ID: 21595713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; NĂ¼sser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of multiobjective hemodynamic control of a heart-assist pump.
    Gwak KW; Ricci M; Snyder S; Paden BE; Boston JR; Simaan MA; Antaki JF
    ASAIO J; 2005; 51(4):329-35. PubMed ID: 16156294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A controller for a miniature intra-aortic ventricular assist device.
    Hsu PL; Bruch J; McMahon R
    Artif Organs; 2011 Mar; 35(3):282-7. PubMed ID: 21114678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo experimental testing of the FW axial blood pump for left ventricular support in Fu Wai Hospital.
    Zhang Y; Hu SS; Zhou JY; Sun HS; Tang Y; Zhang H; Zheng Z; Li GR; Zhu XD; Gui XM
    ASAIO J; 2009; 55(1):28-32. PubMed ID: 19092667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.