These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 9367173)
1. Structural and functional modifications of bovine trypsin by heparins. Influence of heparin molecular mass and structure. Volpi N Biochim Biophys Acta; 1997 Oct; 1336(3):455-64. PubMed ID: 9367173 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of human leukocyte elastase activity by heparins: influence of charge density. Volpi N Biochim Biophys Acta; 1996 Aug; 1290(3):299-307. PubMed ID: 8765134 [TBL] [Abstract][Full Text] [Related]
3. Role of reducing terminals in unfractionated and low-molecular-mass heparins in causing free radical generation and loss of structure and activity of trypsin. Finotti P; Pagetta A; Corvaja C Int J Biol Macromol; 1999 Nov; 26(2-3):135-44. PubMed ID: 10517520 [TBL] [Abstract][Full Text] [Related]
4. Biphasic pattern of heparin-induced oxidative degradation of trypsin in the presence of glucose. Finotti P Biochimie; 1997 Jun; 79(6):351-8. PubMed ID: 9310184 [TBL] [Abstract][Full Text] [Related]
5. Effects of glycosaminoglycans on U-937 leukemia cell proliferation and differentiation: structure-function relationship. Volpi N; Petrini M; Conte A; Valentini P; Venturelli T; Bolognani L; Ronca G Exp Cell Res; 1994 Nov; 215(1):119-30. PubMed ID: 7957660 [TBL] [Abstract][Full Text] [Related]
6. Heparin-induced structural and functional alterations of bovine trypsin. Finotti P; Manente S Biochim Biophys Acta; 1994 Jul; 1207(1):80-7. PubMed ID: 8043613 [TBL] [Abstract][Full Text] [Related]
7. Differential mechanisms for structural and functional alterations of trypsin by heparin, evidence for a specific, radical-generating mechanism at low heparin concentrations. Finotti P; Corvaja C; Pagetta A Free Radic Biol Med; 1999 Dec; 27(11-12):1378-85. PubMed ID: 10641732 [TBL] [Abstract][Full Text] [Related]
8. Characterization of heparins with different relative molecular masses (from 11,600 to 1600) by various analytical techniques. Volpi N J Chromatogr; 1993 Dec; 622(1):13-20. PubMed ID: 8120108 [TBL] [Abstract][Full Text] [Related]
9. Different effects of mucosal, bovine lung and chemically modified heparin on selected biological properties of basic fibroblast growth factor. Coltrini D; Rusnati M; Zoppetti G; Oreste P; Grazioli G; Naggi A; Presta M Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):583-90. PubMed ID: 7980421 [TBL] [Abstract][Full Text] [Related]
10. Separation by heparin-affinity chromatography of catalytically active and inactive forms of trypsin which retain the (Na-K)ATPase stimulating property. Finotti P Clin Chim Acta; 1996 Dec; 256(1):37-51. PubMed ID: 8960786 [TBL] [Abstract][Full Text] [Related]
11. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Lookene A; Chevreuil O; Ostergaard P; Olivecrona G Biochemistry; 1996 Sep; 35(37):12155-63. PubMed ID: 8810923 [TBL] [Abstract][Full Text] [Related]
12. The effect of the chain length of heparin on its interaction with lipoprotein lipase. Clarke AR; Luscombe M; Holbrook JJ Biochim Biophys Acta; 1983 Sep; 747(1-2):130-7. PubMed ID: 6882775 [TBL] [Abstract][Full Text] [Related]
13. Disaccharide analysis and molecular mass determination to microgram level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis. Volpi N Anal Biochem; 1999 Sep; 273(2):229-39. PubMed ID: 10469494 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of heparin and glucose on structural conformation of human alpha1 antitrypsin: evidence for a heparin-induced cleaved form of the inhibitor. Finotti P; de Laureto PP Arch Biochem Biophys; 1997 Nov; 347(1):19-29. PubMed ID: 9344460 [TBL] [Abstract][Full Text] [Related]
15. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources. Saravanan R Adv Food Nutr Res; 2014; 72():45-60. PubMed ID: 25081076 [TBL] [Abstract][Full Text] [Related]
16. Low molecular weight heparins (5 kDa) and oligoheparins (2 kDa) produced by gel permeation enrichment or radical process: comparison of structures and physicochemical and biological properties. Volpi N; Mascellani G; Bianchini P Anal Biochem; 1992 Jan; 200(1):100-7. PubMed ID: 1595883 [TBL] [Abstract][Full Text] [Related]
17. Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Kanabar V; Hirst SJ; O'Connor BJ; Page CP Br J Pharmacol; 2005 Oct; 146(3):370-7. PubMed ID: 16025136 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity relationships of heparin. Independence of heparin charge density and antithrombin-binding domains in thrombin inhibition by antithrombin and heparin cofactor II. Hurst RE; Poon MC; Griffith MJ J Clin Invest; 1983 Sep; 72(3):1042-5. PubMed ID: 6688430 [TBL] [Abstract][Full Text] [Related]
19. Development of new heparin-like compounds and other antithrombotic drugs and their interaction with vascular endothelial cells. Nader HB; Pinhal MA; Baú EC; Castro RA; Medeiros GF; Chavante SF; Leite EL; Trindade ES; Shinjo SK; Rocha HA; Tersariol IL; Mendes A; Dietrich CP Braz J Med Biol Res; 2001 Jun; 34(6):699-709. PubMed ID: 11378657 [TBL] [Abstract][Full Text] [Related]
20. Heparin-induced structural modifications and oxidative cleavage of human serum albumin in the absence and presence of glucose--implications for transcapillary leakage of albumin in hyperglycaemia. Finotti P; Pagetta A Eur J Biochem; 1997 Aug; 247(3):1000-8. PubMed ID: 9288925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]