These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9367309)

  • 1. Fast inversion-recovery MR: the effect of hybrid RARE readout on the null points of fat and cerebrospinal fluid.
    Melhem ER; Jara H; Shakir H; Gagliano TA
    AJNR Am J Neuroradiol; 1997 Oct; 18(9):1627-33. PubMed ID: 9367309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR of the spine with a fast T1-weighted fluid-attenuated inversion recovery sequence.
    Melhem ER; Israel DA; Eustace S; Jara H
    AJNR Am J Neuroradiol; 1997 Mar; 18(3):447-54. PubMed ID: 9090401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online tool for calculating null points in various inversion recovery sequences.
    Kita M; Sato M; Kawano K; Kometani K; Tanaka H; Oda H; Kojima A; Tanaka H
    Magn Reson Imaging; 2013 Nov; 31(9):1631-9. PubMed ID: 23993795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF.
    Bedell BJ; Narayana PA
    J Magn Reson Imaging; 1998; 8(3):544-7. PubMed ID: 9626866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence.
    Carl M; Bydder GM; Du J
    Magn Reson Med; 2016 Aug; 76(2):577-82. PubMed ID: 26309221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing fluid signal in driven-equilibrium short-TI inversion-recovery imaging with short TR times: A feasibility study.
    von Deuster C; Nanz D
    Magn Reson Med; 2024 Dec; 92(6):2571-2579. PubMed ID: 38987979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 1H relaxation times of water in human bone marrow by fat-suppressed turbo spin echo in comparison to MR spectroscopic methods.
    Träber F; Block W; Layer G; Bräucker G; Gieseke J; Kretzer S; Hasan I; Schild HH
    J Magn Reson Imaging; 1996; 6(3):541-8. PubMed ID: 8724421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The low sensitivity of fluid-attenuated inversion-recovery MR in the detection of multiple sclerosis of the spinal cord.
    Keiper MD; Grossman RI; Brunson JC; Schnall MD
    AJNR Am J Neuroradiol; 1997; 18(6):1035-9. PubMed ID: 9194430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles.
    Marty B; Carlier PG
    Magn Reson Med; 2020 Feb; 83(2):621-634. PubMed ID: 31502715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric analysis of white matter, gray matter, and CSF using fractional volume analysis.
    Bedell BJ; Narayana PA
    Magn Reson Med; 1998 Jun; 39(6):961-9. PubMed ID: 9621920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques.
    Le Y; Kipfer HD; Majidi SS; Holz S; Lin C
    AJR Am J Roentgenol; 2014 Sep; 203(3):W307-14. PubMed ID: 25148189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed echo train acquisition displacement encoding with stimulated echoes: an optimized DENSE method for in vivo functional imaging of the human heart.
    Aletras AH; Wen H
    Magn Reson Med; 2001 Sep; 46(3):523-34. PubMed ID: 11550245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast spin-echo MR imaging of the cervical spine: influence of echo train length and echo spacing on image contrast and quality.
    Sze G; Kawamura Y; Negishi C; Constable RT; Merriam M; Oshio K; Jolesz F
    AJNR Am J Neuroradiol; 1993; 14(5):1203-13. PubMed ID: 8237705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Black blood" T2-weighted inversion-recovery MR imaging of the heart.
    Simonetti OP; Finn JP; White RD; Laub G; Henry DA
    Radiology; 1996 Apr; 199(1):49-57. PubMed ID: 8633172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White matter lesion contrast in fast spin-echo fluid-attenuated inversion recovery imaging: effect of varying effective echo time and echo train length.
    Barboriak DP; Provenzale JM; MacFall JR
    AJR Am J Roentgenol; 1999 Oct; 173(4):1091-6. PubMed ID: 10511185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium signal intensity mapping, an MRI method for fast mapping of longitudinal relaxation rates and for image enhancement.
    Surányi P; Kiss P; Ruzsics B; Brott BC; Simor T; Elgavish GA
    Magn Reson Imaging; 2007 Jun; 25(5):641-51. PubMed ID: 17540275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation.
    Stobbe R; Beaulieu C
    Magn Reson Med; 2005 Nov; 54(5):1305-10. PubMed ID: 16217782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium imaging of the human knee using soft inversion recovery fluid attenuation.
    Feldman RE; Stobbe R; Watts A; Beaulieu C
    J Magn Reson; 2013 Sep; 234():197-206. PubMed ID: 23896067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system.
    Del Grande F; Santini F; Herzka DA; Aro MR; Dean CW; Gold GE; Carrino JA
    Radiographics; 2014; 34(1):217-33. PubMed ID: 24428292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Inversion Recovery MRI with fat suppression at 7 tesla: initial experience.
    Madelin G; Oesingmann N; Inglese M
    J Neuroimaging; 2010 Jan; 20(1):87-92. PubMed ID: 19018948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.