These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9367559)

  • 1. Stability of Nonaqueous Emulsions.
    Imhof A; Pine DJ
    J Colloid Interface Sci; 1997 Aug; 192(2):368-74. PubMed ID: 9367559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering.
    Santos J; Calero N; Trujillo-Cayado LA; Garcia MC; Muñoz J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():405-411. PubMed ID: 28822289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant.
    Chanamai R; Horn G; McClements DJ
    J Colloid Interface Sci; 2002 Mar; 247(1):167-76. PubMed ID: 16290453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of emulsion interfacial membrane characteristics on Ostwald ripening in a model emulsion.
    Han SW; Song HY; Moon TW; Choi SJ
    Food Chem; 2018 Mar; 242():91-97. PubMed ID: 29037741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the type and concentration of hydrocolloids on Ostwald ripening of emulsions stabilized with small molecular and non-ionic surfactants.
    Park W; Park J; Im S; Choi SJ
    Food Chem; 2023 Jun; 411():135504. PubMed ID: 36682162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.
    Henry JV; Fryer PJ; Frith WJ; Norton IT
    J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition.
    Jang Y; Park J; Song HY; Choi SJ
    J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils.
    McClements DJ; Henson L; Popplewell LM; Decker EA; Choi SJ
    J Food Sci; 2012 Jan; 77(1):C33-8. PubMed ID: 22133014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of emulsion stabilization with special reference to polymeric surfactants.
    Tadros T
    J Cosmet Sci; 2006; 57(2):153-69. PubMed ID: 16688378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.
    Katepalli H; Bose A
    Langmuir; 2014 Nov; 30(43):12736-42. PubMed ID: 25312030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.
    Pérez-Mosqueda LM; Trujillo-Cayado LA; Carrillo F; Ramírez P; Muñoz J
    Colloids Surf B Biointerfaces; 2015 Apr; 128():127-131. PubMed ID: 25734966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions.
    Ariyaprakai S; Dungan SR
    J Colloid Interface Sci; 2010 Mar; 343(1):102-8. PubMed ID: 20042193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal Breaking of Emulsions Stabilized with Graphene.
    Quinn MD; Vu K; Madden S; Notley SM
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10609-16. PubMed ID: 27054548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.
    Atanase LI; Riess G
    Int J Pharm; 2013 May; 448(2):339-45. PubMed ID: 23566926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-aqueous emulsions: hydrocarbon-formamide systems.
    Sakthivel T; Jaitely V; Patel NV; Florence AT
    Int J Pharm; 2001 Feb; 214(1-2):43-8. PubMed ID: 11282235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ostwald ripening of oil-in-water emulsions stabilized by phenoxy-substituted dextrans.
    Sadtler VM; Imbert P; Dellacherie E
    J Colloid Interface Sci; 2002 Oct; 254(2):355-61. PubMed ID: 12702408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of phase inversion temperature with kinetics of globule coalescence for emulsions stabilized by a polyoxyethylene alkyl ether.
    Enever RP
    J Pharm Sci; 1976 Apr; 65(4):517-20. PubMed ID: 1271249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.
    Durand A; Marie E; Rotureau E; Leonard M; Dellacherie E
    Langmuir; 2004 Aug; 20(16):6956-63. PubMed ID: 15274610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids.
    Goibier L; Pillement C; Monteil J; Faure C; Leal-Calderon F
    Food Chem; 2019 Sep; 293():49-56. PubMed ID: 31151639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.