BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 9367756)

  • 1. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity.
    Wuttke DS; Foster MP; Case DA; Gottesfeld JM; Wright PE
    J Mol Biol; 1997 Oct; 273(1):183-206. PubMed ID: 9367756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural organization of Staf-DNA complexes.
    Schaub M; Krol A; Carbon P
    Nucleic Acids Res; 2000 May; 28(10):2114-21. PubMed ID: 10773080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Drosophila OVO protein DNA binding specificity using random DNA oligomer selection suggests zinc finger degeneration.
    Lee S; Garfinkel MD
    Nucleic Acids Res; 2000 Feb; 28(3):826-34. PubMed ID: 10637336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive use of a phosphate-binding module in DNA polymerase beta, Oct-1 POU domain and phage repressors.
    Yura K; Shionyu M; Kawatani K; Go M
    Cell Mol Life Sci; 1999 Mar; 55(3):472-86. PubMed ID: 10228561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso.
    Buck-Koehntop BA; Stanfield RL; Ekiert DC; Martinez-Yamout MA; Dyson HJ; Wilson IA; Wright PE
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15229-34. PubMed ID: 22949637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching metal ion coordination and DNA Recognition in a Tandem CCHHC-type zinc finger peptide.
    Besold AN; Oluyadi AA; Michel SL
    Inorg Chem; 2013 Apr; 52(8):4721-8. PubMed ID: 23521535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrophobic segment within the 81-amino-acid domain of TFIIIA from Saccharomyces cerevisiae is essential for its transcription factor activity.
    Rowland O; Segall J
    Mol Cell Biol; 1998 Jan; 18(1):420-32. PubMed ID: 9418889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif.
    Dathan N; Zaccaro L; Esposito S; Isernia C; Omichinski JG; Riccio A; Pedone C; Di Blasio B; Fattorusso R; Pedone PV
    Nucleic Acids Res; 2002 Nov; 30(22):4945-51. PubMed ID: 12433998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dhfr oribeta-binding protein RIP60 contains 15 zinc fingers: DNA binding and looping by the central three fingers and an associated proline-rich region.
    Houchens CR; Montigny W; Zeltser L; Dailey L; Gilbert JM; Heintz NH
    Nucleic Acids Res; 2000 Jan; 28(2):570-81. PubMed ID: 10606657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc-finger transcription factors in plants.
    Takatsuji H
    Cell Mol Life Sci; 1998 Jun; 54(6):582-96. PubMed ID: 9676577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.
    Lee BM; Buck-Koehntop BA; Martinez-Yamout MA; Dyson HJ; Wright PE
    J Mol Biol; 2007 Aug; 371(5):1274-89. PubMed ID: 17610897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of DNA binding of MM17, a 'single chain dimer' of transcription factor MASH-1.
    Sieber M; Allemann RK
    Nucleic Acids Res; 2000 May; 28(10):2122-7. PubMed ID: 10773081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three classes of C2H2 zinc finger proteins.
    Iuchi S
    Cell Mol Life Sci; 2001 Apr; 58(4):625-35. PubMed ID: 11361095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ensemble micro neural network approach for elucidating interactions between zinc finger proteins and their target DNA.
    Dutta S; Madan S; Parikh H; Sundar D
    BMC Genomics; 2016 Dec; 17(Suppl 13):1033. PubMed ID: 28155662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step selection of artificial transcription factors using an in vivo screening system.
    Bae KH; Kim JS
    Mol Cells; 2006 Jun; 21(3):376-80. PubMed ID: 16819300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural classification of zinc fingers: survey and summary.
    Krishna SS; Majumdar I; Grishin NV
    Nucleic Acids Res; 2003 Jan; 31(2):532-50. PubMed ID: 12527760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1.
    Desjardins G; Okon M; Graves BJ; McIntosh LP
    Biochemistry; 2016 Jul; 55(29):4105-18. PubMed ID: 27362745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila.
    Bonchuk A; Boyko K; Fedotova A; Nikolaeva A; Lushchekina S; Khrustaleva A; Popov V; Georgiev P
    Nucleic Acids Res; 2021 Feb; 49(4):2375-2389. PubMed ID: 33638995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting zinc finger domains with small molecules: solution structure and binding studies of the RanBP2-type zinc finger of RBM5.
    Farina B; Fattorusso R; Pellecchia M
    Chembiochem; 2011 Dec; 12(18):2837-45. PubMed ID: 22162216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal Motions of Basic Side Chains of the Antennapedia Homeodomain in the Free and DNA-Bound States.
    Nguyen D; Hoffpauir ZA; Iwahara J
    Biochemistry; 2017 Nov; 56(44):5866-5869. PubMed ID: 29045141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.