BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1167 related articles for article (PubMed ID: 9367762)

  • 1. Torsion angle dynamics for NMR structure calculation with the new program DYANA.
    Güntert P; Mumenthaler C; Wüthrich K
    J Mol Biol; 1997 Oct; 273(1):283-98. PubMed ID: 9367762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
    Stein EG; Rice LM; Brünger AT
    J Magn Reson; 1997 Jan; 124(1):154-64. PubMed ID: 9424305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torsion angle approach to nucleic acid distance geometry: TANDY.
    Kumar RA; Hosur RV; Govil G
    J Biomol NMR; 1991 Nov; 1(4):363-78. PubMed ID: 1841705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles.
    Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR
    BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space.
    Gottstein D; Kirchner DK; Güntert P
    J Biomol NMR; 2012 Apr; 52(4):351-64. PubMed ID: 22351031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated annealing with restrained molecular dynamics using a flexible restraint potential: theory and evaluation with simulated NMR constraints.
    Bassolino-Klimas D; Tejero R; Krystek SR; Metzler WJ; Montelione GT; Bruccoleri RE
    Protein Sci; 1996 Apr; 5(4):593-603. PubMed ID: 8845749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints.
    Güntert P; Wüthrich K
    J Biomol NMR; 1991 Nov; 1(4):447-56. PubMed ID: 1841711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.
    Rice LM; Brünger AT
    Proteins; 1994 Aug; 19(4):277-90. PubMed ID: 7984624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics.
    Banci L; Bertini I; Cremonini MA; Gori-Savellini G; Luchinat C; Wüthrich K; Güntert P
    J Biomol NMR; 1998 Nov; 12(4):553-7. PubMed ID: 20012764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA.
    Güntert P; Braun W; Wüthrich K
    J Mol Biol; 1991 Feb; 217(3):517-30. PubMed ID: 1847217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining local conformational variations in DNA. Nuclear magnetic resonance structures of the DNA duplexes d(CGCCTAATCG) and d(CGTCACGCGC) generated using back-calculation of the nuclear Overhauser effect spectra, a distance geometry algorithm and constrained molecular dynamics.
    Metzler WJ; Wang C; Kitchen DB; Levy RM; Pardi A
    J Mol Biol; 1990 Aug; 214(3):711-36. PubMed ID: 2167379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
    Berndt KD; Güntert P; Wüthrich K
    Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of DNA backbone conformations.
    Chambers EJ; Price EA; Bayramyan MC; Haworth IS
    J Biomol Struct Dyn; 2003 Aug; 21(1):111-25. PubMed ID: 12854963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NMR solution structure of human glutaredoxin in the fully reduced form.
    Sun C; Berardi MJ; Bushweller JH
    J Mol Biol; 1998 Jul; 280(4):687-701. PubMed ID: 9677297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic acid structure analysis: a users guide to a collection of new analysis programs.
    Babcock MS; Pednault EP; Olson WK
    J Biomol Struct Dyn; 1993 Dec; 11(3):597-628. PubMed ID: 7510497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC).
    Santini GP; Cognet JA; Xu D; Singarapu KK; Hervé du Penhoat C
    J Phys Chem B; 2009 May; 113(19):6881-93. PubMed ID: 19374420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PERMOL: restraint-based protein homology modeling using DYANA or CNS.
    Möglich A; Weinfurtner D; Gronwald W; Maurer T; Kalbitzer HR
    Bioinformatics; 2005 May; 21(9):2110-1. PubMed ID: 15671120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.