These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 9367772)
1. De novo protein design: towards fully automated sequence selection. Dahiyat BI; Sarisky CA; Mayo SL J Mol Biol; 1997 Nov; 273(4):789-96. PubMed ID: 9367772 [TBL] [Abstract][Full Text] [Related]
2. De novo design of the hydrophobic cores of proteins. Desjarlais JR; Handel TM Protein Sci; 1995 Oct; 4(10):2006-18. PubMed ID: 8535237 [TBL] [Abstract][Full Text] [Related]
3. The beta-beta-alpha fold: explorations in sequence space. Sarisky CA; Mayo SL J Mol Biol; 2001 Apr; 307(5):1411-8. PubMed ID: 11292351 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided design of beta-sheet peptides. López de la Paz M; Lacroix E; Ramírez-Alvarado M; Serrano L J Mol Biol; 2001 Sep; 312(1):229-46. PubMed ID: 11545599 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
6. Design of lambda Cro fold: solution structure of a monomeric variant of the de novo protein. Isogai Y; Ito Y; Ikeya T; Shiro Y; Ota M J Mol Biol; 2005 Dec; 354(4):801-14. PubMed ID: 16289118 [TBL] [Abstract][Full Text] [Related]
7. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis and structure of a zinc finger with an artificial beta-turn. Viles JH; Patel SU; Mitchell JB; Moody CM; Justice DE; Uppenbrink J; Doyle PM; Harris CJ; Sadler PJ; Thornton JM J Mol Biol; 1998 Jun; 279(4):973-86. PubMed ID: 9642075 [TBL] [Abstract][Full Text] [Related]
9. Design and synthesis of a globin fold. Isogai Y; Ota M; Fujisawa T; Izuno H; Mukai M; Nakamura H; Iizuka T; Nishikawa K Biochemistry; 1999 Jun; 38(23):7431-43. PubMed ID: 10360940 [TBL] [Abstract][Full Text] [Related]
10. Effects of bulkiness and hydrophobicity of an aliphatic amino acid in the recognition helix of the GAGA zinc finger on the stability of the hydrophobic core and DNA binding affinity. Dhanasekaran M; Negi S; Imanishi M; Suzuki M; Sugiura Y Biochemistry; 2008 Nov; 47(45):11717-24. PubMed ID: 18855425 [TBL] [Abstract][Full Text] [Related]
11. Construction of a family of Cys2His2 zinc binding sites in the hydrophobic core of thioredoxin by structure-based design. Wisz MS; Garrett CZ; Hellinga HW Biochemistry; 1998 Jun; 37(23):8269-77. PubMed ID: 9622478 [TBL] [Abstract][Full Text] [Related]
12. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability. Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa. Möller HM; Martinez-Yamout MA; Dyson HJ; Wright PE J Mol Biol; 2005 Aug; 351(4):718-30. PubMed ID: 16051273 [TBL] [Abstract][Full Text] [Related]
14. De novo protein design. I. In search of stability and specificity. Koehl P; Levitt M J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293 [TBL] [Abstract][Full Text] [Related]
15. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Georgiev I; Lilien RH; Donald BR Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469 [TBL] [Abstract][Full Text] [Related]
16. Importance of alpha-helix N-capping motif in stabilization of betabetaalpha fold. Koscielska-Kasprzak K; Cierpicki T; Otlewski J Protein Sci; 2003 Jun; 12(6):1283-9. PubMed ID: 12761399 [TBL] [Abstract][Full Text] [Related]
17. De novo protein design: fully automated sequence selection. Dahiyat BI; Mayo SL Science; 1997 Oct; 278(5335):82-7. PubMed ID: 9311930 [TBL] [Abstract][Full Text] [Related]
18. Computational design of a single amino acid sequence that can switch between two distinct protein folds. Ambroggio XI; Kuhlman B J Am Chem Soc; 2006 Feb; 128(4):1154-61. PubMed ID: 16433531 [TBL] [Abstract][Full Text] [Related]
19. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Klepeis JL; Wei Y; Hecht MH; Floudas CA Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306 [TBL] [Abstract][Full Text] [Related]
20. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]