BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9367847)

  • 1. Site and significance of cysteine residues in xylose reductase from Neurospora crassa as deduced by fluorescence studies.
    Rawat U; Rao M
    Biochem Biophys Res Commun; 1997 Oct; 239(3):789-93. PubMed ID: 9367847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa.
    Rawat UB; Rao MB
    Biochim Biophys Acta; 1996 Apr; 1293(2):222-30. PubMed ID: 8620033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and microenvironment of the active site of xylose reductase inferred by fluorescent chemoaffinity labeling.
    Rawat UB; Rao MB
    Eur J Biochem; 1997 Jun; 246(2):344-9. PubMed ID: 9208923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and polarity of the active site of xylanase I from Thermomonospora sp. as deduced by fluorescent chemoaffinity labeling. Site and significance of a histidine residue.
    George SP; Rao MB
    Eur J Biochem; 2001 May; 268(10):2881-8. PubMed ID: 11358504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and microenvironment of the active site of a low molecular weight 1,4-beta-D-glucan glucanohydrolase from an alkalothermophilic Thermomonospora sp.: involvement of lysine and cysteine residues.
    Jagtap S; Rao M
    Biochem Biophys Res Commun; 2006 Aug; 347(2):428-32. PubMed ID: 16828055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of different cysteines in the inactivation of octopine dehydrogenase by p-chloromercuricphenyl sulfonic acid and o-phthalaldehyde.
    Sheikh S; Katiyar SS
    Biochem Mol Biol Int; 1993 Mar; 29(4):719-27. PubMed ID: 8387851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S1 nuclease: immunoaffinity purification and evidence for the proximity of cysteine 25 to the substrate binding site.
    Gite S; Shankar V
    J Mol Recognit; 1995; 8(5):281-9. PubMed ID: 8619949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site.
    Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the tetrameric form of human L-Xylulose reductase: probing the inhibitor-binding site with molecular modeling and site-directed mutagenesis.
    El-Kabbani O; Carbone V; Darmanin C; Ishikura S; Hara A
    Proteins; 2005 Aug; 60(3):424-32. PubMed ID: 15906319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of a novel beta-1--3, 1--4 glucan 4-glucanohydrolase from Thermomonospora sp. having a single active site for lichenan and xylan.
    Anish R; Rao M
    Biochimie; 2007 Dec; 89(12):1489-97. PubMed ID: 17689169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of a lysine residue in the inactivation of Leuconostoc mesenteroides NRRL B-512F dextransucrase by o-phthalaldehyde.
    Goyal A; Katiyar SS
    Biochem Mol Biol Int; 1995 Jul; 36(3):579-85. PubMed ID: 7549957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for tryptophan in proximity to histidine and cysteine as essential to the active site of an alkaline protease.
    Tanksale AM; Vernekar JV; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 2000 Apr; 270(3):910-7. PubMed ID: 10772924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the nature of o-phthalaldehyde reaction with octopine dehydrogenase.
    Sheikh S; Katiyar SS
    J Enzyme Inhib; 1994; 8(1):39-50. PubMed ID: 7539068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme.
    Rawat U; Rao M
    J Biol Chem; 1998 Apr; 273(16):9415-23. PubMed ID: 9545266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site mapping studies of malate dehydrogenase : identification of essential amino acid residues by o-phthalaldehyde.
    Sheikh S; Katiyar SS
    Biochem Int; 1992 Jul; 27(3):517-24. PubMed ID: 1417888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of yeast glutathione reductase by O-phthalaldehyde.
    Pandey A; Katiyar SS
    J Enzyme Inhib; 1996 Oct; 11(2):141-9. PubMed ID: 9204403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site labeling of erythrocyte transglutaminase by o-phthalaldehyde.
    Matteucci G; Lanzara V; Ferrari C; Hanau S; Bergamini CM
    Biol Chem; 1998 Jul; 379(7):921-4. PubMed ID: 9705157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of a lysine residue in the active site of a thermostable xylanase from Thermomonospora sp.
    George SP; Ahmad A; Rao MB
    Biochem Biophys Res Commun; 2001 Mar; 282(1):48-54. PubMed ID: 11263969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.