These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 9367957)
1. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Ermler U; Grabarse W; Shima S; Goubeaud M; Thauer RK Science; 1997 Nov; 278(5342):1457-62. PubMed ID: 9367957 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299 [TBL] [Abstract][Full Text] [Related]
3. Methane: small molecule, big impact. Ferry JG Science; 1997 Nov; 278(5342):1413-4. PubMed ID: 9411766 [No Abstract] [Full Text] [Related]
4. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase. Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843 [TBL] [Abstract][Full Text] [Related]
5. Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum. Rospert S; Voges M; Berkessel A; Albracht SP; Thauer RK Eur J Biochem; 1992 Nov; 210(1):101-7. PubMed ID: 1332856 [TBL] [Abstract][Full Text] [Related]
6. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. Pelmenschikov V; Siegbahn PE J Biol Inorg Chem; 2003 Jul; 8(6):653-62. PubMed ID: 12728361 [TBL] [Abstract][Full Text] [Related]
7. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues . Cedervall PE; Dey M; Pearson AR; Ragsdale SW; Wilmot CM Biochemistry; 2010 Sep; 49(35):7683-93. PubMed ID: 20707311 [TBL] [Abstract][Full Text] [Related]
8. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546 [TBL] [Abstract][Full Text] [Related]
9. The Biological Methane-Forming Reaction: Mechanism Confirmed Through Spectroscopic Characterization of a Key Intermediate. Shima S Angew Chem Int Ed Engl; 2016 Oct; 55(44):13648-13649. PubMed ID: 27571920 [TBL] [Abstract][Full Text] [Related]
10. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Bonacker LG; Baudner S; Mörschel E; Böcher R; Thauer RK Eur J Biochem; 1993 Oct; 217(2):587-95. PubMed ID: 8223602 [TBL] [Abstract][Full Text] [Related]
11. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Dey M; Li X; Kunz RC; Ragsdale SW Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696 [TBL] [Abstract][Full Text] [Related]
12. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. Grabarse W; Mahlert F; Shima S; Thauer RK; Ermler U J Mol Biol; 2000 Oct; 303(2):329-44. PubMed ID: 11023796 [TBL] [Abstract][Full Text] [Related]
13. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order. Wongnate T; Ragsdale SW J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570 [TBL] [Abstract][Full Text] [Related]
14. The enzyme at the end of the food chain. Cammack R Nature; 1997 Dec; 390(6659):443-4. PubMed ID: 9393993 [No Abstract] [Full Text] [Related]
15. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms. Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314 [TBL] [Abstract][Full Text] [Related]
16. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate. Goubeaud M; Schreiner G; Thauer RK Eur J Biochem; 1997 Jan; 243(1-2):110-4. PubMed ID: 9030728 [TBL] [Abstract][Full Text] [Related]
17. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Ebner S; Jaun B; Goenrich M; Thauer RK; Harmer J J Am Chem Soc; 2010 Jan; 132(2):567-75. PubMed ID: 20014831 [TBL] [Abstract][Full Text] [Related]
18. Cryoreduction of methyl-coenzyme M reductase: EPR characterization of forms, MCR(ox1) and MCR (red1). Telser J; Davydov R; Horng YC; Ragsdale SW; Hoffman BM J Am Chem Soc; 2001 Jun; 123(25):5853-60. PubMed ID: 11414817 [TBL] [Abstract][Full Text] [Related]
19. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. Hinderberger D; Ebner S; Mayr S; Jaun B; Reiher M; Goenrich M; Thauer RK; Harmer J J Biol Inorg Chem; 2008 Nov; 13(8):1275-89. PubMed ID: 18712421 [TBL] [Abstract][Full Text] [Related]
20. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. Goenrich M; Duin EC; Mahlert F; Thauer RK J Biol Inorg Chem; 2005 Jun; 10(4):333-42. PubMed ID: 15846525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]