These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 9367957)
41. How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase? Chen SL; Blomberg MR; Siegbahn PE Chemistry; 2012 May; 18(20):6309-15. PubMed ID: 22488738 [TBL] [Abstract][Full Text] [Related]
42. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Bobik TA; Wolfe RS Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103 [TBL] [Abstract][Full Text] [Related]
43. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models. Miyazaki Y; Oohora K; Hayashi T Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362 [TBL] [Abstract][Full Text] [Related]
44. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. Selmer T; Kahnt J; Goubeaud M; Shima S; Grabarse W; Ermler U; Thauer RK J Biol Chem; 2000 Feb; 275(6):3755-60. PubMed ID: 10660523 [TBL] [Abstract][Full Text] [Related]
45. Coordination and geometry of the nickel atom in active methyl-coenzyme M reductase from Methanothermobacter marburgensis as detected by X-ray absorption spectroscopy. Duin EC; Cosper NJ; Mahlert F; Thauer RK; Scott RA J Biol Inorg Chem; 2003 Jan; 8(1-2):141-8. PubMed ID: 12459909 [TBL] [Abstract][Full Text] [Related]
47. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F Polêto MD; Allen KD; Lemkul JA Biochemistry; 2024 Jul; 63(14):1783-1794. PubMed ID: 38914925 [TBL] [Abstract][Full Text] [Related]
48. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Thauer RK Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290 [TBL] [Abstract][Full Text] [Related]
49. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569 [TBL] [Abstract][Full Text] [Related]
50. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase. Piskorski R; Jaun B J Am Chem Soc; 2003 Oct; 125(43):13120-5. PubMed ID: 14570485 [TBL] [Abstract][Full Text] [Related]
51. The crystal structure of methanogen McrD, a methyl-coenzyme M reductase-associated protein. Sutherland-Smith AJ; Carbone V; Schofield LR; Cronin B; Duin EC; Ronimus RS FEBS Open Bio; 2024 Aug; 14(8):1222-1229. PubMed ID: 38877345 [TBL] [Abstract][Full Text] [Related]
52. The magnetic properties of the nickel cofactor F430 in the enzyme methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum. Cheesman MR; Ankel-Fuchs D; Thauer RK; Thompson AJ Biochem J; 1989 Jun; 260(2):613-6. PubMed ID: 2504147 [TBL] [Abstract][Full Text] [Related]
53. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022 [TBL] [Abstract][Full Text] [Related]
54. Structural analysis of a Ni-methyl species in methyl-coenzyme M reductase from Methanothermobacter marburgensis. Cedervall PE; Dey M; Li X; Sarangi R; Hedman B; Ragsdale SW; Wilmot CM J Am Chem Soc; 2011 Apr; 133(15):5626-8. PubMed ID: 21438550 [TBL] [Abstract][Full Text] [Related]
55. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. Bobik TA; Olson KD; Noll KM; Wolfe RS Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735 [TBL] [Abstract][Full Text] [Related]
56. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin. Ankel-Fuchs D; Thauer RK Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633 [TBL] [Abstract][Full Text] [Related]
57. Preparation of coenzyme F430 biosynthetic enzymes and intermediates. Ray P; Rand-Fleming CR; Mansoorabadi SO Methods Enzymol; 2024; 702():147-170. PubMed ID: 39155109 [TBL] [Abstract][Full Text] [Related]
58. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Wackett LP; Honek JF; Begley TP; Wallace V; Orme-Johnson WH; Walsh CT Biochemistry; 1987 Sep; 26(19):6012-8. PubMed ID: 3120769 [TBL] [Abstract][Full Text] [Related]
59. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum. Noll KM; Wolfe RS Biochem Biophys Res Commun; 1987 May; 145(1):204-10. PubMed ID: 3109409 [TBL] [Abstract][Full Text] [Related]
60. Structural modifications and kinetic studies of the substrates involved in the final step of methane formation in Methanobacterium thermoautotrophicum. Olson KD; Chmurkowska-Cichowlas L; McMahon CW; Wolfe RS J Bacteriol; 1992 Feb; 174(3):1007-12. PubMed ID: 1732190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]