BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9368116)

  • 21. Expert knowledge-guided segmentation system for brain MRI.
    Pitiot A; Delingette H; Thompson PM; Ayache N
    Neuroimage; 2004; 23 Suppl 1():S85-96. PubMed ID: 15501103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Landmark-based software for anatomical measurements: a precision study.
    Forsberg A; Kullberg J; Agartz I; Ahlström H; Johansson L; Henriksson KM
    Clin Anat; 2009 May; 22(4):456-62. PubMed ID: 19306317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
    Wu Z; Paulsen KD; Sullivan JM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1128-31. PubMed ID: 15977742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MR-based statistical atlas of the Göttingen minipig brain.
    Watanabe H; Andersen F; Simonsen CZ; Evans SM; Gjedde A; Cumming P;
    Neuroimage; 2001 Nov; 14(5):1089-96. PubMed ID: 11697940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain functional localization: a survey of image registration techniques.
    Gholipour A; Kehtarnavaz N; Briggs R; Devous M; Gopinath K
    IEEE Trans Med Imaging; 2007 Apr; 26(4):427-51. PubMed ID: 17427731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization.
    Zrinzo L; Zrinzo LV; Tisch S; Limousin PD; Yousry TA; Afshar F; Hariz MI
    Brain; 2008 Jun; 131(Pt 6):1588-98. PubMed ID: 18467343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Skull-stripping magnetic resonance brain images using a model-based level set.
    Zhuang AH; Valentino DJ; Toga AW
    Neuroimage; 2006 Aug; 32(1):79-92. PubMed ID: 16697666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining the intercommissural plane and stereotactic coordinates for the Basal Ganglia in the Göttingen minipig brain.
    Rosendal F; Chakravarty MM; Sunde N; Rodell A; Jonsdottir KY; Pedersen M; Bjarkam C; Sørensen JC
    Stereotact Funct Neurosurg; 2010; 88(3):138-46. PubMed ID: 20357521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas.
    Migneco O; Darcourt J; Benoliel J; Martin F; Robert P; Bussiere-Lapalus F; Mena I
    Comput Med Imaging Graph; 1994; 18(6):413-22. PubMed ID: 7850735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast Talairach Transformation for magnetic resonance neuroimages.
    Nowinski WL; Qian G; Bhanu Prakash KN; Hu Q; Aziz A
    J Comput Assist Tomogr; 2006; 30(4):629-41. PubMed ID: 16845295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retrospective registration of PET and MR brain images: an algorithm and its stereotactic validation.
    Ge Y; Fitzpatrick JM; Votaw JR; Gadamsetty S; Maciunas RJ; Kessler RM; Margolin RA
    J Comput Assist Tomogr; 1994; 18(5):800-10. PubMed ID: 8089332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic localization of the anterior commissure, posterior commissure, and midsagittal plane in MRI scans using regression forests.
    Liu Y; Dawant BM
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1362-74. PubMed ID: 25955855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative comparisons of image registration techniques based on high-resolution MRI of the brain.
    Strother SC; Anderson JR; Xu XL; Liow JS; Bonar DC; Rottenberg DA
    J Comput Assist Tomogr; 1994; 18(6):954-62. PubMed ID: 7962808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of a fully automatic method for the routine selection of the anterior and posterior commissures in magnetic resonance images.
    Pallavaram S; Dawant BM; Koyama T; Yu H; Neimat J; Konrad PE; D'Haese PF
    Stereotact Funct Neurosurg; 2009; 87(3):148-54. PubMed ID: 19321967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Three-dimensional reconstructions in neuroanatomy].
    Kretschmann HJ; Vogt H; Schütz T; Gerke M; Riedel A; Buhmann C; Wesemann M; Müller D
    Radiologe; 1991 Oct; 31(10):481-8. PubMed ID: 1956979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated interhemispheric surface extraction in T1-weighted MRI using intensity and symmetry information.
    Nordenskjöld R; Larsson EM; Ahlström H; Johansson L; Kullberg J
    J Neurosci Methods; 2014 Jan; 222():97-105. PubMed ID: 24239903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomic validation of spatial normalization methods for PET.
    Sugiura M; Kawashima R; Sadato N; Senda M; Kanno I; Oda K; Sato K; Yonekura Y; Fukuda H
    J Nucl Med; 1999 Feb; 40(2):317-22. PubMed ID: 10025841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localisation in PET images: direct fitting of the intercommissural (AC-PC) line.
    Friston KJ; Passingham RE; Nutt JG; Heather JD; Sawle GV; Frackowiak RS
    J Cereb Blood Flow Metab; 1989 Oct; 9(5):690-5. PubMed ID: 2789231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical variability, multi-modal coordinate systems, and precision targeting in the marmoset brain.
    Ose T; Autio JA; Ohno M; Frey S; Uematsu A; Kawasaki A; Takeda C; Hori Y; Nishigori K; Nakako T; Yokoyama C; Nagata H; Yamamori T; Van Essen DC; Glasser MF; Watabe H; Hayashi T
    Neuroimage; 2022 Apr; 250():118965. PubMed ID: 35122965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.