BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9368120)

  • 21. Immediate structured visual search for medical images.
    Simonyan K; Zisserman A; Criminisi A
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):288-96. PubMed ID: 22003711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies.
    Pedrosa J; Barbosa D; Heyde B; Schnell F; Rosner A; Claus P; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):525-536. PubMed ID: 27992332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autonomous epicardial and endocardial boundary detection in echocardiographic short-axis images.
    Geiser EA; Wilson DC; Wang DX; Conetta DA; Murphy JD; Hutson AD
    J Am Soc Echocardiogr; 1998 Apr; 11(4):338-48. PubMed ID: 9571583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction.
    Xie J; Jiang Y; Tsui HT; Heng PA
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2300-9. PubMed ID: 17073336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of two algorithms for automated stone detection in clinical B-mode ultrasound images of the abdomen.
    Gupta A; Gosain B; Kaushal S
    J Clin Monit Comput; 2010 Oct; 24(5):341-62. PubMed ID: 20714793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segmentation of the heart muscle in 3-D pediatric echocardiographic images.
    Nillesen MM; Lopata RG; Gerrits IH; Kapusta L; Huisman HJ; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2007 Sep; 33(9):1453-62. PubMed ID: 17574727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental validation of an automated edge-detection method for a simultaneous determination of the endocardial and epicardial borders in short-axis cardiac MR images: application in normal volunteers.
    Furber A; Balzer P; Cavaro-Ménard C; Croué A; Da Costa E; Lethimonnier F; Geslin P; Tadéi A; Jallet P; Le Jeune JJ
    J Magn Reson Imaging; 1998; 8(5):1006-14. PubMed ID: 9786136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic localization of the fetal cerebellum on 3D ultrasound volumes.
    Liu X; Yu J; Wang Y; Chen P
    Med Phys; 2013 Nov; 40(11):112902. PubMed ID: 24320469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating segmentation error without ground truth.
    Kohlberger T; Singh V; Alvino C; Bahlmann C; Grady L
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):528-36. PubMed ID: 23285592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast, interactive algorithm for segmentation of a series of related images: application to volumetric analysis of MR images of the heart.
    Wang JZ; Turner DA; Chutuape MD
    J Magn Reson Imaging; 1992; 2(5):575-82. PubMed ID: 1392251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LEFMIS: locally-oriented evaluation framework for medical image segmentation algorithms.
    Skalski A; Jakubowski J; Drewniak T
    Phys Med Biol; 2018 Aug; 63(16):165016. PubMed ID: 29999495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.
    Cui W; Wang Y; Lei T; Fan Y; Feng Y
    Comput Math Methods Med; 2013; 2013():570635. PubMed ID: 24302974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segmentation of fetal ultrasound images.
    Jardim SM; Figueiredo MA
    Ultrasound Med Biol; 2005 Feb; 31(2):243-50. PubMed ID: 15708464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A topo-graph model for indistinct target boundary definition from anatomical images.
    Cui H; Wang X; Zhou J; Gong G; Eberl S; Yin Y; Wang L; Feng D; Fulham M
    Comput Methods Programs Biomed; 2018 Jun; 159():211-222. PubMed ID: 29650314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standard plane localization in ultrasound by radial component model and selective search.
    Ni D; Yang X; Chen X; Chin CT; Chen S; Heng PA; Li S; Qin J; Wang T
    Ultrasound Med Biol; 2014 Nov; 40(11):2728-42. PubMed ID: 25220278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions.
    Hao X; Bruce CJ; Pislaru C; Greenleaf JF
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1373-83. PubMed ID: 11811837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic Measurement of Thalamic Diameter in 2-D Fetal Ultrasound Brain Images Using Shape Prior Constrained Regularized Level Sets.
    Sridar P; Kumar A; Li C; Woo J; Quinton A; Benzie R; Peek MJ; Feng D; Kumar RK; Nanan R; Kim J
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):1069-1078. PubMed ID: 27333614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactive automatic fetal head measurements from ultrasound images using multimedia computer technology.
    Pathak SD; Chalana V; Kim Y
    Ultrasound Med Biol; 1997; 23(5):665-73. PubMed ID: 9253814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images.
    Zhang L; Ye X; Lambrou T; Duan W; Allinson N; Dudley NJ
    Phys Med Biol; 2016 Feb; 61(3):1095-115. PubMed ID: 26758386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An empirical parameter selection method for endocardial border identification algorithms.
    Hammoude A
    Comput Med Imaging Graph; 2001; 25(1):33-45. PubMed ID: 11120406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.