These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 9368137)
1. The effects of calcium phosphate particles on the growth of osteoblasts. Sun JS; Tsuang YH; Liao CJ; Liu HC; Hang YS; Lin FH J Biomed Mater Res; 1997 Dec; 37(3):324-34. PubMed ID: 9368137 [TBL] [Abstract][Full Text] [Related]
2. Effects of calcium phosphate bioceramics on skeletal muscle cells. Sun JS; Tsuang YH; Yao CH; Liu HC; Lin FH; Hang YS J Biomed Mater Res; 1997 Feb; 34(2):227-33. PubMed ID: 9029303 [TBL] [Abstract][Full Text] [Related]
3. The effect of sintered beta-dicalcium pyrophosphate particle size on newborn Wistar rat osteoblasts. Sun JS; Tsuang YH; Liao CJ; Liu HC; Hang YS; Lin FH Artif Organs; 1999 Apr; 23(4):331-8. PubMed ID: 10226697 [TBL] [Abstract][Full Text] [Related]
4. The influence of hydroxyapatite particles on osteoclast cell activities. Sun JS; Lin FH; Hung TY; Tsuang YH; Chang WH; Liu HC J Biomed Mater Res; 1999 Jun; 45(4):311-21. PubMed ID: 10321703 [TBL] [Abstract][Full Text] [Related]
5. The application potential of sintered beta-dicalcium pyrophosphate in total joint arthroplasty. Sun JS; Tsuang YH; Lin FH; Chen LT; Hang YS; Liu HC J Arthroplasty; 2003 Apr; 18(3):352-60. PubMed ID: 12728430 [TBL] [Abstract][Full Text] [Related]
6. Effect of calcium phosphate phases affecting the crosstalk between osteoblasts and osteoclasts in vitro. Shiwaku Y; Tsuchiya K; Xiao L; Suzuki O J Biomed Mater Res A; 2019 May; 107(5):1001-1013. PubMed ID: 30684383 [TBL] [Abstract][Full Text] [Related]
7. Surface reactivity of calcium phosphate based ceramics in a cell culture system. John A; Varma HK; Kumari TV J Biomater Appl; 2003 Jul; 18(1):63-78. PubMed ID: 12873076 [TBL] [Abstract][Full Text] [Related]
8. The influence on gene-expression profiling of osteoblasts behavior following treatment with the ionic products of sintered beta-dicalcium pyrophosphate dissolution. Sun JS; Chang WH; Chen LT; Huang YC; Juang LW; Lin FH Biomaterials; 2004 Feb; 25(4):607-16. PubMed ID: 14607498 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. Harada Y; Wang JT; Doppalapudi VA; Willis AA; Jasty M; Harris WH; Nagase M; Goldring SR J Biomed Mater Res; 1996 May; 31(1):19-26. PubMed ID: 8731145 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Wang C; Duan Y; Markovic B; Barbara J; Howlett CR; Zhang X; Zreiqat H Biomaterials; 2004 Jun; 25(13):2507-14. PubMed ID: 14751735 [TBL] [Abstract][Full Text] [Related]
11. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Jin P; Liu L; Cheng L; Chen X; Xi S; Jiang T Biomed Eng Online; 2023 Feb; 22(1):12. PubMed ID: 36759894 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics. Fei L; Wang C; Xue Y; Lin K; Chang J; Sun J J Biomed Mater Res B Appl Biomater; 2012 Jul; 100(5):1237-44. PubMed ID: 22454365 [TBL] [Abstract][Full Text] [Related]
13. [Biocompatibility of HA/TCP biphasic ceramics with co-cultured human osteoblasts in vitro]. Lu X; Li S; Zhang J; Zhang Z; Lu B; Bu H; Li Y; Cheng J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):497-9. PubMed ID: 11791290 [TBL] [Abstract][Full Text] [Related]
14. Proliferation and differentiation of cultured MC3T3-E1 osteoblasts on surface-layer modified hydroxyapatite ceramic with acid and heat treatments. Yuasa T; Miyamoto Y; Kon M; Ishikawa K; Takechi M; Momota Y; Tatehara S; Takano H; Mimamiguchi S; Nagayama M Dent Mater J; 2005 Jun; 24(2):207-12. PubMed ID: 16022440 [TBL] [Abstract][Full Text] [Related]
15. Transforming growth factor (TGF)-beta1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Lee JY; Seol YJ; Kim KH; Lee YM; Park YJ; Rhyu IC; Chung CP; Lee SJ Pharm Res; 2004 Oct; 21(10):1790-6. PubMed ID: 15553224 [TBL] [Abstract][Full Text] [Related]
16. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Liu H; Yazici H; Ergun C; Webster TJ; Bermek H Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980 [TBL] [Abstract][Full Text] [Related]
17. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity. Monchau F; Hivart P; Genestie B; Chai F; Descamps M; Hildebrand HF Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):490-8. PubMed ID: 25428100 [TBL] [Abstract][Full Text] [Related]
18. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. Sun JS; Liu HC; Chang WH; Li J; Lin FH; Tai HC J Biomed Mater Res; 1998 Mar; 39(3):390-7. PubMed ID: 9468047 [TBL] [Abstract][Full Text] [Related]
19. Sadowska JM; Guillem-Marti J; Montufar EB; Espanol M; Ginebra MP Tissue Eng Part A; 2017 Dec; 23(23-24):1297-1309. PubMed ID: 28107811 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic evaluation of β tricalcium phosphate prepared by hot isostatic pressing. Mateescu M; Rguitti E; Ponche A; Descamps M; Anselme K Biomatter; 2012; 2(3):103-13. PubMed ID: 23507861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]