These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 9368277)

  • 21. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates.
    Williams AM; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen uptake kinetics during treadmill running across exercise intensity domains.
    Carter H; Pringle JS; Jones AM; Doust JH
    Eur J Appl Physiol; 2002 Feb; 86(4):347-54. PubMed ID: 11990749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.
    Scheuermann BW; Hoelting BD; Noble ML; Barstow TJ
    J Physiol; 2001 Feb; 531(Pt 1):245-56. PubMed ID: 11179407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Aug; 99(2):683-90. PubMed ID: 15817720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic alkalosis induced by pre-exercise ingestion of NaHCO3 does not modulate the slow component of VO2 kinetics in humans.
    Zoładź JA; Duda K; Majerczak J; Domański J; Emmerich J
    J Physiol Pharmacol; 1997 Jun; 48(2):211-23. PubMed ID: 9223026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence of cardiac functional reserve upon exhaustion during incremental exercise to determine VO2max.
    Elliott AD; Skowno J; Prabhu M; Noakes TD; Ansley L
    Br J Sports Med; 2015 Jan; 49(2):128-32. PubMed ID: 23293009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.
    Poole DC; Schaffartzik W; Knight DR; Derion T; Kennedy B; Guy HJ; Prediletto R; Wagner PD
    J Appl Physiol (1985); 1991 Oct; 71(4):1245-60. PubMed ID: 1757346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.
    Burnley M; Doust JH; Carter H; Jones AM
    Exp Physiol; 2001 May; 86(3):417-25. PubMed ID: 11429659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; Obminski G; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    Exp Physiol; 2000 Jan; 85(1):109-16. PubMed ID: 10662900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.
    Zoladz JA; Rademaker AC; Sargeant AJ
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):211-7. PubMed ID: 8568657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue.
    Day JR; Rossiter HB; Coats EM; Skasick A; Whipp BJ
    J Appl Physiol (1985); 2003 Nov; 95(5):1901-7. PubMed ID: 12857763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prior heavy-intensity exercise's enhancement of oxygen-uptake kinetics and short-term high-intensity exercise performance independent of aerobic-training status.
    Caritá RA; Greco CC; Denadai BS
    Int J Sports Physiol Perform; 2015 Apr; 10(3):339-45. PubMed ID: 25203458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time courses of cardiac output and oxygen uptake following stepwise increases in exercise intensity.
    Leyk D; Hoffmann U; Baum K; Essfeld D
    Int J Sports Med; 1995 Aug; 16(6):357-63. PubMed ID: 7591385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of exercise modality on oxygen uptake kinetics during heavy exercise.
    Jones AM; McConnell AM
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):213-9. PubMed ID: 10453923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The slow component of O2 uptake kinetics during heavy exercise.
    Whipp BJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1319-26. PubMed ID: 7741865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of blood donation on O2 uptake on-kinetics, peak O2 uptake and time to exhaustion during severe-intensity cycle exercise in humans.
    Burnley M; Roberts CL; Thatcher R; Doust JH; Jones AM
    Exp Physiol; 2006 May; 91(3):499-509. PubMed ID: 16431932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans.
    Endo MY; Kobayakawa M; Kinugasa R; Kuno S; Akima H; Rossiter HB; Miura A; Fukuba Y
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R812-20. PubMed ID: 17459915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between the slow component of oxygen uptake and the potential reduction in maximal power output during constant-load exercise.
    Yano T; Yunoki T; Ogata H
    J Sports Med Phys Fitness; 2001 Jun; 41(2):165-9. PubMed ID: 11447357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dichloroacetate does not speed phase-II pulmonary VO2 kinetics following the onset of heavy intensity cycle exercise.
    Jones AM; Koppo K; Wilkerson DP; Wilmshurst S; Campbell IT
    Pflugers Arch; 2004 Mar; 447(6):867-74. PubMed ID: 14673651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.