These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 9368420)
1. Protein quality control along the route to the plant vacuole. Pedrazzini E; Giovinazzo G; Bielli A; de Virgilio M; Frigerio L; Pesca M; Faoro F; Bollini R; Ceriotti A; Vitale A Plant Cell; 1997 Oct; 9(10):1869-80. PubMed ID: 9368420 [TBL] [Abstract][Full Text] [Related]
2. Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: selective use of an alternative route to vacuoles. Frigerio L; Pastres A; Prada A; Vitale A Plant Cell; 2001 May; 13(5):1109-26. PubMed ID: 11340185 [TBL] [Abstract][Full Text] [Related]
3. Protein domains involved in assembly in the endoplasmic reticulum promote vacuolar delivery when fused to secretory GFP, indicating a protein quality control pathway for degradation in the plant vacuole. Foresti O; De Marchis F; de Virgilio M; Klein EM; Arcioni S; Bellucci M; Vitale A Mol Plant; 2008 Nov; 1(6):1067-76. PubMed ID: 19825604 [TBL] [Abstract][Full Text] [Related]
4. Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. Pimpl P; Taylor JP; Snowden C; Hillmer S; Robinson DG; Denecke J Plant Cell; 2006 Jan; 18(1):198-211. PubMed ID: 16339854 [TBL] [Abstract][Full Text] [Related]
5. Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Pueyo JJ; Chrispeels MJ; Herman EM Planta; 1995; 196(3):586-96. PubMed ID: 7647686 [TBL] [Abstract][Full Text] [Related]
6. The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Gomord V; Denmat LA; Fitchette-Lainé AC; Satiat-Jeunemaitre B; Hawes C; Faye L Plant J; 1997 Feb; 11(2):313-25. PubMed ID: 9076996 [TBL] [Abstract][Full Text] [Related]
7. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Park M; Kim SJ; Vitale A; Hwang I Plant Physiol; 2004 Feb; 134(2):625-39. PubMed ID: 14730078 [TBL] [Abstract][Full Text] [Related]
8. Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Frigerio L; de Virgilio M; Prada A; Faoro F; Vitale A Plant Cell; 1998 Jun; 10(6):1031-42. PubMed ID: 9634590 [TBL] [Abstract][Full Text] [Related]
9. Misfolding and aggregation of vacuolar glycoproteins in plant cells. Sparvoli F; Faoro F; Daminati MG; Ceriotti A; Bollini R Plant J; 2000 Dec; 24(6):825-36. PubMed ID: 11135116 [TBL] [Abstract][Full Text] [Related]
10. The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. Castelli S; Vitale A J Exp Bot; 2005 May; 56(415):1379-87. PubMed ID: 15809284 [TBL] [Abstract][Full Text] [Related]
11. Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information. Dorel C; Voelker TA; Herman EM; Chrispeels MJ J Cell Biol; 1989 Feb; 108(2):327-37. PubMed ID: 2645295 [TBL] [Abstract][Full Text] [Related]
12. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Schroeder MR; Borkhsenious ON; Matsuoka K; Nakamura K; Raikhel NV Plant Physiol; 1993 Feb; 101(2):451-8. PubMed ID: 8278507 [TBL] [Abstract][Full Text] [Related]
13. An engineered C-terminal disulfide bond can partially replace the phaseolin vacuolar sorting signal. Pompa A; De Marchis F; Vitale A; Arcioni S; Bellucci M Plant J; 2010 Mar; 61(5):782-91. PubMed ID: 20030752 [TBL] [Abstract][Full Text] [Related]
14. Vacuolar protein sorting mechanisms in plants. Xiang L; Etxeberria E; Van den Ende W FEBS J; 2013 Feb; 280(4):979-93. PubMed ID: 23241209 [TBL] [Abstract][Full Text] [Related]
15. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. Künzl F; Früholz S; Fäßler F; Li B; Pimpl P Nat Plants; 2016 Mar; 2():16017. PubMed ID: 27249560 [TBL] [Abstract][Full Text] [Related]
16. Sec22 and Memb11 are v-SNAREs of the anterograde endoplasmic reticulum-Golgi pathway in tobacco leaf epidermal cells. Chatre L; Brandizzi F; Hocquellet A; Hawes C; Moreau P Plant Physiol; 2005 Nov; 139(3):1244-54. PubMed ID: 16244155 [TBL] [Abstract][Full Text] [Related]
17. C-terminal extension of phaseolin with a short methionine-rich sequence can inhibit trimerisation and result in high instability. Nuttall J; Vitale A; Frigerio L Plant Mol Biol; 2003 Apr; 51(6):885-94. PubMed ID: 12777049 [TBL] [Abstract][Full Text] [Related]
18. Unconventional pathways of secretory plant proteins from the endoplasmic reticulum to the vacuole bypassing the Golgi complex. De Marchis F; Bellucci M; Pompa A Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733072 [TBL] [Abstract][Full Text] [Related]
19. Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. Jiang L; Rogers JC J Cell Biol; 1998 Nov; 143(5):1183-99. PubMed ID: 9832548 [TBL] [Abstract][Full Text] [Related]
20. Traffic of human α-mannosidase in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole pathway without involving the Golgi complex. De Marchis F; Bellucci M; Pompa A Plant Physiol; 2013 Apr; 161(4):1769-82. PubMed ID: 23449646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]