BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9368578)

  • 1. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Nov; 28(11):2290-4; discussion 2295. PubMed ID: 9368578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat.
    PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate.
    Sobey CG; Heistad DD; Faraci FM
    Am J Physiol; 1998 Nov; 275(5):H1606-12. PubMed ID: 9815067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of impaired endothelium-dependent cerebral vasodilatation in response to bradykinin in hypertensive rats.
    Yang ST; Mayhan WG; Faraci FM; Heistad DD
    Stroke; 1991 Sep; 22(9):1177-82. PubMed ID: 1926261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1995 Jun; 76(6):1057-62. PubMed ID: 7758160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles.
    Lang MG; PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin.
    Brian JE; Faraci FM; Moore SA
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2023-9. PubMed ID: 11299202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T; Dietrich HH; Hongo K; Goto T; Dacey RG
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels.
    Faraci FM; Sobey CG; Chrissobolis S; Lund DD; Heistad DD; Weintraub NL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R246-53. PubMed ID: 11404300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
    Wei EP; Kontos HA; Beckman JS
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1262-6. PubMed ID: 8853367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles.
    Sobey CG; Faraci FM
    Stroke; 1997 Apr; 28(4):837-42; discussion 842-3. PubMed ID: 9099205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen metabolites and vasodilator mechanisms in rat cremasteric arterioles.
    Wolin MS; Rodenburg JM; Messina EJ; Kaley G
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1159-63. PubMed ID: 3109259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and vascular effects of cyclooxygenase-2 in brain.
    Brian JE; Moore SA; Faraci FM
    Stroke; 1998 Dec; 29(12):2600-6. PubMed ID: 9836773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles.
    Rivers RJ; Hein TW; Zhang C; Kuo L
    Circulation; 2001 Oct; 104(15):1749-53. PubMed ID: 11591608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide.
    Faraci FM; Breese KR; Heistad DD
    Stroke; 1994 Aug; 25(8):1679-83. PubMed ID: 8042220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus.
    Mayhan WG; Mayhan JF; Sun H; Patel KP
    Microcirculation; 2004; 11(7):605-13. PubMed ID: 15513870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor necrosis factor-alpha-induced dilatation of cerebral arterioles.
    Brian JE; Faraci FM
    Stroke; 1998 Feb; 29(2):509-15. PubMed ID: 9472897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature.
    Woodman OL; Wongsawatkul O
    Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cilazapril on cerebral vasodilatation in hypertensive rats.
    Yang ST; Faraci FM; Heistad DD
    Hypertension; 1993 Aug; 22(2):150-5. PubMed ID: 8340150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.