These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9368578)

  • 1. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Nov; 28(11):2290-4; discussion 2295. PubMed ID: 9368578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat.
    PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate.
    Sobey CG; Heistad DD; Faraci FM
    Am J Physiol; 1998 Nov; 275(5):H1606-12. PubMed ID: 9815067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of impaired endothelium-dependent cerebral vasodilatation in response to bradykinin in hypertensive rats.
    Yang ST; Mayhan WG; Faraci FM; Heistad DD
    Stroke; 1991 Sep; 22(9):1177-82. PubMed ID: 1926261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1995 Jun; 76(6):1057-62. PubMed ID: 7758160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles.
    Lang MG; PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COX-2-dependent delayed dilatation of cerebral arterioles in response to bradykinin.
    Brian JE; Faraci FM; Moore SA
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2023-9. PubMed ID: 11299202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T; Dietrich HH; Hongo K; Goto T; Dacey RG
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels.
    Faraci FM; Sobey CG; Chrissobolis S; Lund DD; Heistad DD; Weintraub NL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R246-53. PubMed ID: 11404300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
    Wei EP; Kontos HA; Beckman JS
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1262-6. PubMed ID: 8853367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles.
    Sobey CG; Faraci FM
    Stroke; 1997 Apr; 28(4):837-42; discussion 842-3. PubMed ID: 9099205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen metabolites and vasodilator mechanisms in rat cremasteric arterioles.
    Wolin MS; Rodenburg JM; Messina EJ; Kaley G
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1159-63. PubMed ID: 3109259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and vascular effects of cyclooxygenase-2 in brain.
    Brian JE; Moore SA; Faraci FM
    Stroke; 1998 Dec; 29(12):2600-6. PubMed ID: 9836773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles.
    Rivers RJ; Hein TW; Zhang C; Kuo L
    Circulation; 2001 Oct; 104(15):1749-53. PubMed ID: 11591608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide.
    Faraci FM; Breese KR; Heistad DD
    Stroke; 1994 Aug; 25(8):1679-83. PubMed ID: 8042220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus.
    Mayhan WG; Mayhan JF; Sun H; Patel KP
    Microcirculation; 2004; 11(7):605-13. PubMed ID: 15513870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor necrosis factor-alpha-induced dilatation of cerebral arterioles.
    Brian JE; Faraci FM
    Stroke; 1998 Feb; 29(2):509-15. PubMed ID: 9472897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature.
    Woodman OL; Wongsawatkul O
    Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cilazapril on cerebral vasodilatation in hypertensive rats.
    Yang ST; Faraci FM; Heistad DD
    Hypertension; 1993 Aug; 22(2):150-5. PubMed ID: 8340150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.