BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 9368651)

  • 61. Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding.
    Nagatoishi S; Isono N; Tsumoto K; Sugimoto N
    Biochimie; 2011 Aug; 93(8):1231-8. PubMed ID: 21511000
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer.
    Lin Y; Jayasena SD
    J Mol Biol; 1997 Aug; 271(1):100-11. PubMed ID: 9300057
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Unfolding and conformational variations of thrombin-binding DNA aptamers: synthesis, circular dichroism and molecular dynamics simulations.
    Sun L; Jin H; Zhao X; Liu Z; Guan Y; Yang Z; Zhang L; Zhang L
    ChemMedChem; 2014 May; 9(5):993-1001. PubMed ID: 24715713
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reversible regulation of aptamer activity with effector-responsive hairpin oligonucleotides.
    Li N
    J Lab Autom; 2013 Feb; 18(1):77-84. PubMed ID: 22651934
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Measurement of aptamer-protein interactions with back-scattering interferometry.
    Olmsted IR; Xiao Y; Cho M; Csordas AT; Sheehan JH; Meiler J; Soh HT; Bornhop DJ
    Anal Chem; 2011 Dec; 83(23):8867-70. PubMed ID: 22032342
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetic characterization of inhibition of human thrombin with DNA aptamers by turbidimetric assay.
    Zavyalova EG; Protopopova AD; Yaminsky IV; Kopylov AM
    Anal Biochem; 2012 Feb; 421(1):234-9. PubMed ID: 22056408
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding.
    Russo Krauss I; Spiridonova V; Pica A; Napolitano V; Sica F
    Nucleic Acids Res; 2016 Jan; 44(2):983-91. PubMed ID: 26673709
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The selection of DNA aptamers for two different epitopes of thrombin was not due to different partitioning methods.
    Wilson R; Cossins A; Nicolau DV; Missailidis S
    Nucleic Acid Ther; 2013 Feb; 23(1):88-92. PubMed ID: 23216233
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reversible regulation of protein binding affinity by a DNA machine.
    Zhou C; Yang Z; Liu D
    J Am Chem Soc; 2012 Jan; 134(3):1416-8. PubMed ID: 22229476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fibrinogen gamma' chain binds thrombin exosite II.
    Lovely RS; Moaddel M; Farrell DH
    J Thromb Haemost; 2003 Jan; 1(1):124-31. PubMed ID: 12871549
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strategy for molecular beacon binding readout: separating molecular recognition element and signal reporter.
    Wang Y; Li J; Jin J; Wang H; Tang H; Yang R; Wang K
    Anal Chem; 2009 Dec; 81(23):9703-9. PubMed ID: 19899746
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA-Nanoscaffold-Assisted Selection of Femtomolar Bivalent Human α-Thrombin Aptamers with Potent Anticoagulant Activity.
    Zhou Y; Qi X; Liu Y; Zhang F; Yan H
    Chembiochem; 2019 Oct; 20(19):2494-2503. PubMed ID: 31083763
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers.
    Pica A; Russo Krauss I; Parente V; Tateishi-Karimata H; Nagatoishi S; Tsumoto K; Sugimoto N; Sica F
    Nucleic Acids Res; 2017 Jan; 45(1):461-469. PubMed ID: 27899589
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Iterative optimization of high-affinity proteases inhibitors using phage display. 1. Plasmin.
    Markland W; Ley AC; Lee SW; Ladner RC
    Biochemistry; 1996 Jun; 35(24):8045-57. PubMed ID: 8672509
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin.
    Troisi R; Balasco N; Santamaria A; Vitagliano L; Sica F
    Int J Biol Macromol; 2021 Jun; 181():858-867. PubMed ID: 33864869
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Putative Mechanisms Underlying High Inhibitory Activities of Bimodular DNA Aptamers to Thrombin.
    Zavyalova EG; Legatova VA; Alieva RS; Zalevsky AO; Tashlitsky VN; Arutyunyan AM; Kopylov AM
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682825
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Binding of exosite ligands to human thrombin. Re-evaluation of allosteric linkage between thrombin exosites I and II.
    Verhamme IM; Olson ST; Tollefsen DM; Bock PE
    J Biol Chem; 2002 Mar; 277(9):6788-98. PubMed ID: 11724802
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thrombin structure and function: why thrombin is the primary target for antithrombotics.
    Fenton JW; Ofosu FA; Moon DG; Maraganore JM
    Blood Coagul Fibrinolysis; 1991 Feb; 2(1):69-75. PubMed ID: 1772999
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthesis, characterization and in vitro activity of thrombin-binding DNA aptamers with triazole internucleotide linkages.
    Varizhuk AM; Tsvetkov VB; Tatarinova ON; Kaluzhny DN; Florentiev VL; Timofeev EN; Shchyolkina AK; Borisova OF; Smirnov IP; Grokhovsky SL; Aseychev AV; Pozmogova GE
    Eur J Med Chem; 2013 Sep; 67():90-7. PubMed ID: 23850569
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Isolation and identification of aptamers from defibrotide that act as thrombin antagonists in vitro.
    Bracht F; Schrör K
    Biochem Biophys Res Commun; 1994 Apr; 200(2):933-7. PubMed ID: 8179629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.