BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 9368938)

  • 1. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience?
    Morris RG; Frey U
    Philos Trans R Soc Lond B Biol Sci; 1997 Oct; 352(1360):1489-503. PubMed ID: 9368938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies of the role of hippocampal synaptic plasticity in spatial learning: is hippocampal LTP a mechanism for automatically recording attended experience?
    Morris RG
    J Physiol Paris; 1996; 90(5-6):333-4. PubMed ID: 9089506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity, hippocampal place cells, and cognitive maps.
    Shapiro M
    Arch Neurol; 2001 Jun; 58(6):874-81. PubMed ID: 11405801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro.
    Davis S; Butcher SP; Morris RG
    J Neurosci; 1992 Jan; 12(1):21-34. PubMed ID: 1345945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade.
    Bannerman DM; Good MA; Butcher SP; Ramsay M; Morris RG
    Nature; 1995 Nov; 378(6553):182-6. PubMed ID: 7477320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage?
    Morris RG; Davis S; Butcher SP
    Philos Trans R Soc Lond B Biol Sci; 1990 Aug; 329(1253):187-204. PubMed ID: 1978364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory.
    Bast T; da Silva BM; Morris RG
    J Neurosci; 2005 Jun; 25(25):5845-56. PubMed ID: 15976073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.
    Moosmang S; Haider N; Klugbauer N; Adelsberger H; Langwieser N; Müller J; Stiess M; Marais E; Schulla V; Lacinova L; Goebbels S; Nave KA; Storm DR; Hofmann F; Kleppisch T
    J Neurosci; 2005 Oct; 25(43):9883-92. PubMed ID: 16251435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning.
    Shiflett MW; Tomaszycki ML; Rankin AZ; DeVoogd TJ
    Behav Neurosci; 2004 Feb; 118(1):121-30. PubMed ID: 14979788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial learning without NMDA receptor-dependent long-term potentiation.
    Saucier D; Cain DP
    Nature; 1995 Nov; 378(6553):186-9. PubMed ID: 7477321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Hippocampus; 2009 Dec; 19(12):1187-98. PubMed ID: 19309036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silent Learning.
    Rossato JI; Moreno A; Genzel L; Yamasaki M; Takeuchi T; Canals S; Morris RGM
    Curr Biol; 2018 Nov; 28(21):3508-3515.e5. PubMed ID: 30415706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of prior synaptic activity on the induction of long-term potentiation.
    Huang YY; Colino A; Selig DK; Malenka RC
    Science; 1992 Feb; 255(5045):730-3. PubMed ID: 1346729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation.
    Kim JJ; Foy MR; Thompson RF
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4750-3. PubMed ID: 8643474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas.
    Morris RG
    Eur J Neurosci; 2006 Jun; 23(11):2829-46. PubMed ID: 16819972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of NMDA receptors in hippocampal area CA1 by low and high frequency orthodromic stimulation and their contribution to induction of long-term potentiation.
    Grover LM; Teyler TJ
    Synapse; 1994 Jan; 16(1):66-75. PubMed ID: 7907824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a representational hypothesis of the role of hippocampal synaptic plasticity in spatial and other forms of learning.
    Morris RG
    Cold Spring Harb Symp Quant Biol; 1990; 55():161-73. PubMed ID: 1983442
    [No Abstract]   [Full Text] [Related]  

  • 20. Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons.
    Shapiro ML; Eichenbaum H
    Hippocampus; 1999; 9(4):365-84. PubMed ID: 10495019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.