These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 9369014)
1. Protein phi and psi dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. Beger RD; Bolton PH J Biomol NMR; 1997 Sep; 10(2):129-42. PubMed ID: 9369014 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Metzler WJ; Constantine KL; Friedrichs MS; Bell AJ; Ernst EG; Lavoie TB; Mueller L Biochemistry; 1993 Dec; 32(50):13818-29. PubMed ID: 8268157 [TBL] [Abstract][Full Text] [Related]
3. Protein structure prediction using global optimization by basin-hopping with NMR shift restraints. Hoffmann F; Strodel B J Chem Phys; 2013 Jan; 138(2):025102. PubMed ID: 23320726 [TBL] [Abstract][Full Text] [Related]
4. Use of very long-distance NOEs in a fully deuterated protein: an approach for rapid protein fold determination. Koharudin LM; Bonvin AM; Kaptein R; Boelens R J Magn Reson; 2003 Aug; 163(2):228-35. PubMed ID: 12914838 [TBL] [Abstract][Full Text] [Related]
5. Secondary structural effects on protein NMR chemical shifts. Wang Y J Biomol NMR; 2004 Nov; 30(3):233-44. PubMed ID: 15754052 [TBL] [Abstract][Full Text] [Related]
6. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199 [TBL] [Abstract][Full Text] [Related]
7. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509 [TBL] [Abstract][Full Text] [Related]
8. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints. Giesen AW; Homans SW; Brown JM J Biomol NMR; 2003 Jan; 25(1):63-71. PubMed ID: 12567000 [TBL] [Abstract][Full Text] [Related]
9. High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. Zeng J; Boyles J; Tripathy C; Wang L; Yan A; Zhou P; Donald BR J Biomol NMR; 2009 Nov; 45(3):265-81. PubMed ID: 19711185 [TBL] [Abstract][Full Text] [Related]
10. Accurate prediction of protein torsion angles using chemical shifts and sequence homology. Neal S; Berjanskii M; Zhang H; Wishart DS Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900 [TBL] [Abstract][Full Text] [Related]
11. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins. Wang L; Eghbalnia HR; Markley JL J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393 [TBL] [Abstract][Full Text] [Related]
12. Precision measurements of deuterium isotope effects on the chemical shifts of backbone nuclei in proteins: correlations with secondary structure. Sun H; Tugarinov V J Phys Chem B; 2012 Jun; 116(25):7436-48. PubMed ID: 22681631 [TBL] [Abstract][Full Text] [Related]
13. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
14. Influence of ¹H chemical shift assignments of the interface residues on structure determinations of homodimeric proteins. Lin YJ; Kirchner DK; Güntert P J Magn Reson; 2012 Sep; 222():96-104. PubMed ID: 22858667 [TBL] [Abstract][Full Text] [Related]
15. Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Gardner KH; Rosen MK; Kay LE Biochemistry; 1997 Feb; 36(6):1389-401. PubMed ID: 9063887 [TBL] [Abstract][Full Text] [Related]
16. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints. Reichel K; Fisette O; Braun T; Lange OF; Hummer G; Schäfer LV Proteins; 2017 May; 85(5):812-826. PubMed ID: 27936510 [TBL] [Abstract][Full Text] [Related]
17. Effects of amino acid phi,psi propensities and secondary structure interactions in modulating H alpha chemical shifts in peptide and protein beta-sheet. Sharman GJ; Griffiths-Jones SR; Jourdan M; Searle MS J Am Chem Soc; 2001 Dec; 123(49):12318-24. PubMed ID: 11734033 [TBL] [Abstract][Full Text] [Related]
18. Using chemical shifts to assess transient secondary structure and generate ensemble structures of intrinsically disordered proteins. Kashtanov S; Borcherds W; Wu H; Daughdrill GW; Ytreberg FM Methods Mol Biol; 2012; 895():139-52. PubMed ID: 22760318 [TBL] [Abstract][Full Text] [Related]
19. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods. Muskett FW; Kelly GP; Whitford D J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986 [TBL] [Abstract][Full Text] [Related]
20. Spectral fitting for signal assignment and structural analysis of uniformly 13C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics. Matsuki Y; Akutsu H; Fujiwara T J Biomol NMR; 2007 Aug; 38(4):325-39. PubMed ID: 17612797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]