BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 9369273)

  • 1. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interactions between nitric oxide and angiotensin II on pressure diuresis and natriuresis.
    Madrid MI; García-Salom M; Tornel J; De Gasparo M; Fenoy FJ
    Am J Physiol; 1997 Nov; 273(5):R1676-82. PubMed ID: 9374809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AT2-antagonist sensitive potentiation of angiotensin II-induced vasoconstrictions by blockade of nitric oxide synthesis in rat renal vasculature.
    Muller C; Endlich K; Barthelmebs M; Helwig JJ
    Br J Pharmacol; 1997 Dec; 122(7):1495-501. PubMed ID: 9421301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion.
    Moreno C; Llinás MT; Rodriguez F; Moreno JM; Salazar FJ
    J Physiol Biochem; 2016 Mar; 72(1):1-8. PubMed ID: 26611113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of AT1 receptors in the renal papillary effects of acute and chronic nitric oxide inhibition.
    Ortíz MC; Fortepiani LA; Ruiz-Marcos FM; Atucha NM; García-Estañ J
    Am J Physiol; 1998 Mar; 274(3):R760-6. PubMed ID: 9580145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional renal haemodynamics of angiotensin II infusion under prostaglandin, kinin or converting enzyme inhibition in the Wistar rat.
    Rudenstam J; Creutz J; Göthberg G; Karlström G; Bergström G
    Blood Press; 2000; 9(2-3):169-75. PubMed ID: 10855742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry.
    Nobes MS; Harris PJ; Yamada H; Mendelsohn FA
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F998-1006. PubMed ID: 1721499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide on papillary blood flow and pressure natriuresis.
    Fenoy FJ; Ferrer P; Carbonell L; García-Salom M
    Hypertension; 1995 Mar; 25(3):408-14. PubMed ID: 7875767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between nitric oxide and renal nerves on pressure-diuresis and natriuresis.
    Madrid MI; Salom MG; Tornel J; López E; Fenoy FJ
    J Am Soc Nephrol; 1998 Sep; 9(9):1588-95. PubMed ID: 9727366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
    Rajapakse NW; Sampson AK; Eppel GA; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R745-54. PubMed ID: 15890788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
    Siragy HM; Carey RM
    J Clin Invest; 1997 Jul; 100(2):264-9. PubMed ID: 9218502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II.
    Barrett RJ; Droppleman DA
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F651-9. PubMed ID: 8238545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.