These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9369464)

  • 21. Neural pathways for the control of birdsong production.
    Wild JM
    J Neurobiol; 1997 Nov; 33(5):653-70. PubMed ID: 9369465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of syringeal muscles in gating airflow and sound production in singing brown thrashers.
    Goller F; Suthers RA
    J Neurophysiol; 1996 Feb; 75(2):867-76. PubMed ID: 8714659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of syringeal muscles in controlling the phonology of bird song.
    Goller F; Suthers RA
    J Neurophysiol; 1996 Jul; 76(1):287-300. PubMed ID: 8836225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird.
    Fee MS; Shraiman B; Pesaran B; Mitra PP
    Nature; 1998 Sep; 395(6697):67-71. PubMed ID: 12071206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering.
    Daley M; Goller F
    J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional bilateral muscle control of vocal output in the songbird syrinx.
    Méndez JM; Goller F
    J Neurophysiol; 2020 Dec; 124(6):1857-1874. PubMed ID: 33026896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilateral syringeal coupling during phonation of a songbird.
    Nowicki S; Capranica RR
    J Neurosci; 1986 Dec; 6(12):3595-610. PubMed ID: 3794791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial muting leads to age-dependent modification of motor patterns underlying crystallized zebra finch song.
    Cooper BG; Goller F
    J Neurobiol; 2004 Dec; 61(3):317-32. PubMed ID: 15389688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity.
    Li J; Zeng SJ; Zhang XW; Zuo MX
    Behav Brain Res; 2006 Sep; 172(2):202-11. PubMed ID: 16806516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing.
    Riede T; Goller F
    Brain Lang; 2010 Oct; 115(1):69-80. PubMed ID: 20153887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency modulation during song in a suboscine does not require vocal muscles.
    Amador A; Goller F; Mindlin GB
    J Neurophysiol; 2008 May; 99(5):2383-9. PubMed ID: 18287554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemispheric coordination is necessary for song production in adult birds: implications for a dual role for forebrain nuclei in vocal motor control.
    Ashmore RC; Bourjaily M; Schmidt MF
    J Neurophysiol; 2008 Jan; 99(1):373-85. PubMed ID: 17977927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.
    Plummer EM; Goller F
    J Exp Biol; 2008 Jan; 211(Pt 1):66-78. PubMed ID: 18083734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syringeal specialization of frequency control during song production in the Bengalese finch (Lonchura striata domestica).
    Secora KR; Peterson JR; Urbano CM; Chung B; Okanoya K; Cooper BG
    PLoS One; 2012; 7(3):e34135. PubMed ID: 22479543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of lesions of the central nucleus of the anterior archistriatum on contact call and warble song production in the budgerigar (Melopsittacus undulatus).
    Heaton JT; Brauth SE
    Neurobiol Learn Mem; 2000 May; 73(3):207-42. PubMed ID: 10775493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural pathways for bilateral vocal control in songbirds.
    Wild JM; Williams MN; Suthers RA
    J Comp Neurol; 2000 Jul; 423(3):413-26. PubMed ID: 10870082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural song control system of hummingbirds: comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (Dove, owl, gull, quail, chicken) nonpasserines.
    Gahr M
    J Comp Neurol; 2000 Oct; 426(2):182-96. PubMed ID: 10982462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.
    Mencio C; Kuberan B; Goller F
    J Neurophysiol; 2017 Feb; 117(2):637-645. PubMed ID: 27852738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of syringeal denervation in the budgerigar (Melopsittacus undulatus): the role of the syrinx in call production.
    Heaton JT; Farabaugh SM; Brauth SE
    Neurobiol Learn Mem; 1995 Jul; 64(1):68-82. PubMed ID: 7582814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bird song: superfast muscles control dove's trill.
    Elemans CP; Spierts IL; Müller UK; Van Leeuwen JL; Goller F
    Nature; 2004 Sep; 431(7005):146. PubMed ID: 15356620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.