These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9370033)

  • 1. The design, synthesis and transmembrane transport studies of a biomimetic sterol-based ion channel.
    Pechulis AD; Thompson RJ; Fojtik JP; Schwartz HM; Lisek CA; Frye LL
    Bioorg Med Chem; 1997 Oct; 5(10):1893-901. PubMed ID: 9370033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers.
    Biron E; Voyer N; Meillon JC; Cormier ME; Auger M
    Biopolymers; 2000; 55(5):364-72. PubMed ID: 11241211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis[(benzo-15-crown-5)-15-yl methyl] pimelate forms ion channels in planar lipid bilayer: a novel model ion channel.
    Vijayvergiya V; Ghosh P; Bera AK; Das S
    Physiol Chem Phys Med NMR; 1999; 31(2):93-102. PubMed ID: 10816761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and membrane activity of a bis(metacyclophane)bolaamphiphile.
    Cameron LM; Fyles TM; Hu CW
    J Org Chem; 2002 Mar; 67(5):1548-53. PubMed ID: 11871885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of a redox-active ion channel supporting cation flux in lipid bilayers.
    Tsikolia M; Hall AC; Suarez C; Nylander ZO; Wardlaw SM; Gibson ME; Valentine KL; Onyewadume LN; Ahove DA; Woodbury M; Mongare MM; Hall CD; Wang Z; Draghici B; Katritzky AR
    Org Biomol Chem; 2009 Sep; 7(18):3862-70. PubMed ID: 19707694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, and characterization of peptide nanostructures having ion channel activity.
    Biron E; Otis F; Meillon JC; Robitaille M; Lamothe J; Van Hove P; Cormier ME; Voyer N
    Bioorg Med Chem; 2004 Mar; 12(6):1279-90. PubMed ID: 15018900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation transport by a redox-active synthetic ion channel.
    Hall AC; Suarez C; Hom-Choudhury A; Manu AN; Hall CD; Kirkovits GJ; Ghiriviga I
    Org Biomol Chem; 2003 Aug; 1(16):2973-82. PubMed ID: 12968350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies.
    Sánchez-Quesada J; Isler MP; Ghadiri MR
    J Am Chem Soc; 2002 Aug; 124(34):10004-5. PubMed ID: 12188661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial cation-conducting channels: design, synthesis, and characterization.
    Gokel GW
    Cell Biochem Biophys; 2001; 35(3):211-31. PubMed ID: 11894842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore formation in phospholipid bilayers by amphiphilic cavitands.
    Elidrisi I; Negin S; Bhatt PV; Govender T; Kruger HG; Gokel GW; Maguire GE
    Org Biomol Chem; 2011 Jun; 9(12):4498-506. PubMed ID: 21509358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphotericin B channels in the bacterial membrane: role of sterol and temperature.
    Venegas B; González-Damián J; Celis H; Ortega-Blake I
    Biophys J; 2003 Oct; 85(4):2323-32. PubMed ID: 14507696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane ion conductance by an acyclic bolaamphiphile.
    Fyles TM; Hu Cw ; Knoy R
    Org Lett; 2001 May; 3(9):1335-7. PubMed ID: 11348228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A synthetic ion channel derived from a metallogallarene capsule that functions in phospholipid bilayers.
    Kulikov OV; Li R; Gokel GW
    Angew Chem Int Ed Engl; 2009; 48(2):375-7. PubMed ID: 19053120
    [No Abstract]   [Full Text] [Related]  

  • 14. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy.
    Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E
    Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraphile channels: models for transmembrane, cation-conducting transporters.
    Gokel GW; Ferdani R; Liu J; Pajewski R; Shabany H; Uetrecht P
    Chemistry; 2001 Jan; 7(1):33-9. PubMed ID: 11205025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure.
    Shahedi V; Orädd G; Lindblom G
    Biophys J; 2006 Oct; 91(7):2501-7. PubMed ID: 16829566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monodisperse transmembrane α-helical peptide barrel.
    Mahendran KR; Niitsu A; Kong L; Thomson AR; Sessions RB; Woolfson DN; Bayley H
    Nat Chem; 2017 May; 9(5):411-419. PubMed ID: 28430192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic transmembrane polyether model active in lipid bilayers.
    Espínola CG; Pérez R; Martín JD
    Org Lett; 2000 Oct; 2(20):3161-4. PubMed ID: 11009371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How far can a sodium ion travel within a lipid bilayer?
    Otis F; Racine-Berthiaume C; Voyer N
    J Am Chem Soc; 2011 May; 133(17):6481-3. PubMed ID: 21384853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol affinity for phospholipid bilayers is influenced by hydrophobic matching between lipids and transmembrane peptides.
    Ijäs HK; Lönnfors M; Nyholm TK
    Biochim Biophys Acta; 2013 Mar; 1828(3):932-7. PubMed ID: 23220446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.