These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9370246)

  • 1. Estimating the electrostatic potential at the acetylcholine receptor agonist site using power saturation EPR.
    Addona GH; Andrews SH; Cafiso DS
    Biochim Biophys Acta; 1997 Oct; 1329(1):74-84. PubMed ID: 9370246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological disposition of Cys 222 in the alpha-subunit of nicotinic acetylcholine receptor analyzed by fluorescence-quenching and electron paramagnetic resonance measurements.
    Kim J; McNamee MG
    Biochemistry; 1998 Mar; 37(13):4680-6. PubMed ID: 9521789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-protein interactions and protein dynamics in vesicles containing the nicotinic acetylcholine receptor: a study with ethanol.
    Abadji V; Raines DE; Dalton LA; Miller KW
    Biochim Biophys Acta; 1994 Aug; 1194(1):25-34. PubMed ID: 8075138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probes of membrane electrostatics: synthesis and voltage-dependent partitioning of negative hydrophobic ion spin labels in lipid vesicles.
    Franklin JC; Cafiso DS; Flewelling RF; Hubbell WL
    Biophys J; 1993 Mar; 64(3):642-53. PubMed ID: 8386011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of electrostatic potentials at biological interfaces using electron-electron double resonance.
    Shin YK; Hubbell WL
    Biophys J; 1992 Jun; 61(6):1443-53. PubMed ID: 1319760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron spin resonance studies of acyl chain motion in reconstituted nicotinic acetylcholine receptor membranes.
    Raines DE; Wu G; Dalton LA; Miller KW
    Biophys J; 1995 Aug; 69(2):498-505. PubMed ID: 8527664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.
    Voinov MA; Smirnov AI
    Methods Enzymol; 2015; 564():191-217. PubMed ID: 26477252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
    Voinov MA; Rivera-Rivera I; Smirnov AI
    Biophys J; 2013 Jan; 104(1):106-16. PubMed ID: 23332063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.
    Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH
    J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution and membrane bound structure of a peptide derived from the protein kinase C substrate domain of neuromodulin.
    Wertz SL; Savino Y; Cafiso DS
    Biochemistry; 1996 Aug; 35(34):11104-12. PubMed ID: 8780514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates.
    Stauffer DA; Karlin A
    Biochemistry; 1994 Jun; 33(22):6840-9. PubMed ID: 8204619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance.
    Altenbach C; Froncisz W; Hyde JS; Hubbell WL
    Biophys J; 1989 Dec; 56(6):1183-91. PubMed ID: 2558734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of local anesthetics to reconstituted acetylcholine receptors: effect of protein surface potential.
    Earnest JP; Limbacher HP; McNamee MG; Wang HH
    Biochemistry; 1986 Sep; 25(19):5809-18. PubMed ID: 3022805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of surface potential asymmetry in phospholipid vesicles by a spin label relaxation method.
    Sundberg SA; Hubbell WL
    Biophys J; 1986 Feb; 49(2):553-62. PubMed ID: 3006815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling.
    Rufener E; Frazier AA; Wieser CM; Hinderliter A; Cafiso DS
    Biochemistry; 2005 Jan; 44(1):18-28. PubMed ID: 15628842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-bound orientation and position of the synaptotagmin I C2A domain by site-directed spin labeling.
    Frazier AA; Roller CR; Havelka JJ; Hinderliter A; Cafiso DS
    Biochemistry; 2003 Jan; 42(1):96-105. PubMed ID: 12515543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling.
    Klug CS; Su W; Feix JB
    Biochemistry; 1997 Oct; 36(42):13027-33. PubMed ID: 9335564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic steering at acetylcholine binding sites.
    Meltzer RH; Thompson E; Soman KV; Song XZ; Ebalunode JO; Wensel TG; Briggs JM; Pedersen SE
    Biophys J; 2006 Aug; 91(4):1302-14. PubMed ID: 16751247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane structure of protein kinase C and calmodulin binding domain of myristoylated alanine rich C kinase substrate determined by site-directed spin labeling.
    Qin Z; Cafiso DS
    Biochemistry; 1996 Mar; 35(9):2917-25. PubMed ID: 8608129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.