BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 9370469)

  • 1. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy.
    Galkin O; Buchter S; Tabirian A; Schulte A
    Biophys J; 1997 Nov; 73(5):2752-63. PubMed ID: 9370469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of optical line shapes and kinetic hole burning in myoglobin.
    Srajer V; Champion PM
    Biochemistry; 1991 Jul; 30(30):7390-402. PubMed ID: 1854744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoexcitation dynamics of NO-bound ferric myoglobin investigated by femtosecond vibrational spectroscopy.
    Park J; Lee T; Park J; Lim M
    J Phys Chem B; 2013 Mar; 117(10):2850-63. PubMed ID: 23432208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration.
    Gilch H; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1995 Jul; 69(1):214-27. PubMed ID: 7669899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of myoglobin-ligand complexes at near-atomic resolution.
    Vojtechovský J; Chu K; Berendzen J; Sweet RM; Schlichting I
    Biophys J; 1999 Oct; 77(4):2153-74. PubMed ID: 10512835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photolysis-triggered heme ligand switch in H93G myoglobin.
    Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG
    Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds.
    Cao W; Ye X; Georgiev GY; Berezhna S; Sjodin T; Demidov AA; Wang W; Sage JT; Champion PM
    Biochemistry; 2004 Jun; 43(22):7017-27. PubMed ID: 15170339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: a QM/MM density functional study.
    Rovira C; Schulze B; Eichinger M; Evanseck JD; Parrinello M
    Biophys J; 2001 Jul; 81(1):435-45. PubMed ID: 11423426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insight into intrinsic heme distortion in ligand binding in hemoprotein.
    Neya S; Suzuki M; Hoshino T; Ode H; Imai K; Komatsu T; Ikezaki A; Nakamura M; Furutani Y; Kandori H
    Biochemistry; 2010 Jul; 49(27):5642-50. PubMed ID: 20536131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption band III kinetics probe the picosecond heme iron motion triggered by nitric oxide binding to hemoglobin and myoglobin.
    Yoo BK; Kruglik SG; Lamarre I; Martin JL; Negrerie M
    J Phys Chem B; 2012 Apr; 116(13):4106-14. PubMed ID: 22394099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.
    Melchers B; Knapp EW; Parak F; Cordone L; Cupane A; Leone M
    Biophys J; 1996 May; 70(5):2092-9. PubMed ID: 9172733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic and electrochemical characterization of myoglobin thin film: implication of the role of histidine 64 for fast heterogeneous electron transfer.
    Feng M; Tachikawa H
    J Am Chem Soc; 2001 Apr; 123(13):3013-20. PubMed ID: 11457012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding to heme proteins: II. Transitions in the heme pocket of myoglobin.
    Mourant JR; Braunstein DP; Chu K; Frauenfelder H; Nienhaus GU; Ormos P; Young RD
    Biophys J; 1993 Oct; 65(4):1496-507. PubMed ID: 8274643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correct interpretation of heme protein spectra allows distinguishing between the heme and the protein dynamics.
    Stavrov SS
    Biopolymers; 2004 May-Jun 5; 74(1-2):37-40. PubMed ID: 15137090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A steric mechanism for inhibition of CO binding to heme proteins.
    Kachalova GS; Popov AN; Bartunik HD
    Science; 1999 Apr; 284(5413):473-6. PubMed ID: 10205052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.