These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 9371435)
1. Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. de Rudder KE; Thomas-Oates JE; Geiger O J Bacteriol; 1997 Nov; 179(22):6921-8. PubMed ID: 9371435 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. de Rudder KE; López-Lara IM; Geiger O Mol Microbiol; 2000 Aug; 37(4):763-72. PubMed ID: 10972799 [TBL] [Abstract][Full Text] [Related]
3. Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. Sohlenkamp C; de Rudder KE; Geiger O J Bacteriol; 2004 Mar; 186(6):1667-77. PubMed ID: 14996797 [TBL] [Abstract][Full Text] [Related]
4. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836 [TBL] [Abstract][Full Text] [Related]
5. Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. de Rudder KE; Sohlenkamp C; Geiger O J Biol Chem; 1999 Jul; 274(28):20011-6. PubMed ID: 10391951 [TBL] [Abstract][Full Text] [Related]
6. Phosphatidylcholine biosynthesis and function in bacteria. Geiger O; López-Lara IM; Sohlenkamp C Biochim Biophys Acta; 2013 Mar; 1831(3):503-13. PubMed ID: 22922101 [TBL] [Abstract][Full Text] [Related]
7. A component of genetic variation among mice in activity of transmembrane methyltransferase I determined by the H-2 region. Markovac J; Erickson RP Biochem Pharmacol; 1985 Oct; 34(19):3421-5. PubMed ID: 4052092 [TBL] [Abstract][Full Text] [Related]
8. Properties of particulate and detergent-solubilized phospholipid N-methyltransferase activity from calf brain. Percy AK; Moore JF; Waechter CJ J Neurochem; 1982 May; 38(5):1404-12. PubMed ID: 7062058 [TBL] [Abstract][Full Text] [Related]
9. Pathways for phosphatidylcholine biosynthesis in bacteria. Martínez-Morales F; Schobert M; López-Lara IM; Geiger O Microbiology (Reading); 2003 Dec; 149(Pt 12):3461-3471. PubMed ID: 14663079 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the methyltransferases in the yeast phosphatidylethanolamine methylation pathway by selective gene disruption. Kodaki T; Yamashita S Eur J Biochem; 1989 Nov; 185(2):243-51. PubMed ID: 2684666 [TBL] [Abstract][Full Text] [Related]
12. Choline metabolism in placenta: evidence for the biosynthesis of phosphatidylcholine in microsomes via the methylation pathway. Welsch F; Wenger WC; Stedman DB Placenta; 1981; 2(3):211-21. PubMed ID: 7279876 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of phosphatidylcholine in bacteria. Sohlenkamp C; López-Lara IM; Geiger O Prog Lipid Res; 2003 Mar; 42(2):115-62. PubMed ID: 12547654 [TBL] [Abstract][Full Text] [Related]
14. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. Kodaki T; Yamashita S J Biol Chem; 1987 Nov; 262(32):15428-35. PubMed ID: 2445736 [TBL] [Abstract][Full Text] [Related]
15. Phosphatidylethanolamine methylation in intestinal brush border membranes from rats resistant to Trichinella spiralis. Harari Y; Castro GA Mol Biochem Parasitol; 1985 Jun; 15(3):317-26. PubMed ID: 4033691 [TBL] [Abstract][Full Text] [Related]
16. Partial purification and characterization of phospholipid N-methyltransferases from murine thymocyte microsomes. Makishima F; Toyoshima S; Osawa T Arch Biochem Biophys; 1985 Apr; 238(1):315-24. PubMed ID: 3872629 [TBL] [Abstract][Full Text] [Related]
17. Phosphatidylethanolamine N-methyltransferase activity in isolated rod outer segments from bovine retina. Roque ME; Giusto NM Exp Eye Res; 1995 Jun; 60(6):631-43. PubMed ID: 7641846 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
19. Effects of a methyl-deficient diet on rat liver phosphatidylcholine biosynthesis. Hoffman DR; Haning JA; Cornatzer WE Can J Biochem; 1981 Jul; 59(7):543-50. PubMed ID: 6271368 [TBL] [Abstract][Full Text] [Related]
20. Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. López-Lara IM; Geiger O J Biotechnol; 2001 Oct; 91(2-3):211-21. PubMed ID: 11566392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]