These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
647 related articles for article (PubMed ID: 9371449)
1. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Song S; Park C J Bacteriol; 1997 Nov; 179(22):7025-32. PubMed ID: 9371449 [TBL] [Abstract][Full Text] [Related]
2. Regulation of expression of the Lactobacillus pentosus xylAB operon. Lokman BC; Heerikhuisen M; Leer RJ; van den Broek A; Borsboom Y; Chaillou S; Postma PW; Pouwels PH J Bacteriol; 1997 Sep; 179(17):5391-7. PubMed ID: 9286992 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T; Scheler A; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948 [TBL] [Abstract][Full Text] [Related]
4. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. Marqués S; Gallegos MT; Manzanera M; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1998 Jun; 180(11):2889-94. PubMed ID: 9603877 [TBL] [Abstract][Full Text] [Related]
5. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Sizemore C; Buchner E; Rygus T; Witke C; Götz F; Hillen W Mol Gen Genet; 1991 Jul; 227(3):377-84. PubMed ID: 1714034 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Scheler A; Rygus T; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):526-34. PubMed ID: 1953294 [TBL] [Abstract][Full Text] [Related]
7. Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Tropel D; Bähler A; Globig K; van der Meer JR Environ Microbiol; 2004 Nov; 6(11):1186-96. PubMed ID: 15479251 [TBL] [Abstract][Full Text] [Related]
8. Genetic evidence of separate repressor and activator activities of the XylR regulator of the TOL plasmid, pWW0, of Pseudomonas putida. Bertoni G; Pérez-Martín J; de Lorenzo V Mol Microbiol; 1997 Mar; 23(6):1221-7. PubMed ID: 9106213 [TBL] [Abstract][Full Text] [Related]
9. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. Watson N; Dunyak DS; Rosey EL; Slonczewski JL; Olson ER J Bacteriol; 1992 Jan; 174(2):530-40. PubMed ID: 1370290 [TBL] [Abstract][Full Text] [Related]
10. Sequencing and characterization of the xyl operon of a gram-positive bacterium, Tetragenococcus halophila. Takeda Y; Takase K; Yamato I; Abe K Appl Environ Microbiol; 1998 Jul; 64(7):2513-9. PubMed ID: 9647823 [TBL] [Abstract][Full Text] [Related]
11. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Lokman BC; Leer RJ; van Sorge R; Pouwels PH Mol Gen Genet; 1994 Oct; 245(1):117-25. PubMed ID: 7845354 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. Sizemore C; Wieland B; Götz F; Hillen W J Bacteriol; 1992 May; 174(9):3042-8. PubMed ID: 1569030 [TBL] [Abstract][Full Text] [Related]
13. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons. Kang HY; Song S; Park C Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469 [TBL] [Abstract][Full Text] [Related]
14. Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation. Heo JM; Kim HJ; Lee SJ BMC Microbiol; 2021 Dec; 21(1):332. PubMed ID: 34872501 [TBL] [Abstract][Full Text] [Related]
15. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D; Hillen W Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140 [TBL] [Abstract][Full Text] [Related]
16. Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Holtel A; Timmis KN; Ramos JL Nucleic Acids Res; 1992 Apr; 20(7):1755-62. PubMed ID: 1579469 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ramos JL; Marqués S; Timmis KN Annu Rev Microbiol; 1997; 51():341-73. PubMed ID: 9343354 [TBL] [Abstract][Full Text] [Related]
18. Upstream regulatory sequence for transcriptional activator XylR in the first operon of xylene metabolism on the TOL plasmid. Inouye S; Gomada M; Sangodkar UM; Nakazawa A; Nakazawa T J Mol Biol; 1990 Nov; 216(2):251-60. PubMed ID: 2174974 [TBL] [Abstract][Full Text] [Related]
19. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Gärtner D; Geissendörfer M; Hillen W J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911 [TBL] [Abstract][Full Text] [Related]
20. Utilization of D-ribose through D-xylose transporter. Song S; Park C FEMS Microbiol Lett; 1998 Jun; 163(2):255-61. PubMed ID: 9673030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]