BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9371469)

  • 1. Characterization of Bacillus subtilis hemN.
    Hippler B; Homuth G; Hoffmann T; Hungerer C; Schumann W; Jahn D
    J Bacteriol; 1997 Nov; 179(22):7181-5. PubMed ID: 9371469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional control of Bacillus subtilis hemN and hemZ.
    Homuth G; Rompf A; Schumann W; Jahn D
    J Bacteriol; 1999 Oct; 181(19):5922-9. PubMed ID: 10498703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase.
    Troup B; Hungerer C; Jahn D
    J Bacteriol; 1995 Jun; 177(11):3326-31. PubMed ID: 7768836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr.
    Rompf A; Hungerer C; Hoffmann T; Lindenmeyer M; Römling U; Gross U; Doss MO; Arai H; Igarashi Y; Jahn D
    Mol Microbiol; 1998 Aug; 29(4):985-97. PubMed ID: 9767567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase.
    Xu K; Elliott T
    J Bacteriol; 1994 Jun; 176(11):3196-203. PubMed ID: 8195073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.
    Fischer HM; Velasco L; Delgado MJ; Bedmar EJ; Schären S; Zingg D; Göttfert M; Hennecke H
    J Bacteriol; 2001 Feb; 183(4):1300-11. PubMed ID: 11157943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Alcaligenes eutrophus hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase, is required for heme biosynthesis during anaerobic growth.
    Lieb C; Siddiqui RA; Hippler B; Jahn D; Friedrich B
    Arch Microbiol; 1998 Jan; 169(1):52-60. PubMed ID: 9396835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation.
    Xu K; Delling J; Elliott T
    J Bacteriol; 1992 Jun; 174(12):3953-63. PubMed ID: 1317844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dnaK operon of Bacillus subtilis is heptacistronic.
    Homuth G; Masuda S; Mogk A; Kobayashi Y; Schumann W
    J Bacteriol; 1997 Feb; 179(4):1153-64. PubMed ID: 9023197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant.
    Troup B; Jahn M; Hungerer C; Jahn D
    J Bacteriol; 1994 Feb; 176(3):673-80. PubMed ID: 8300522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional regulation of the Bacillus subtilis dnaK operon.
    Homuth G; Mogk A; Schumann W
    Mol Microbiol; 1999 Jun; 32(6):1183-97. PubMed ID: 10383760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genes of lepA and hemN form a bicistronic operon in Bacillus subtilis.
    Homuth G; Heinemann M; Zuber U; Schumann W
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1641-9. PubMed ID: 8757728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth.
    Härtig E; Hartmann A; Schätzle M; Albertini AM; Jahn D
    Appl Environ Microbiol; 2006 Aug; 72(8):5260-5. PubMed ID: 16885274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis.
    Schulz A; Tzschaschel B; Schumann W
    Mol Microbiol; 1995 Feb; 15(3):421-9. PubMed ID: 7540247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681.
    Schmidt G; Hertel C; Hammes WP
    Syst Appl Microbiol; 1999 Sep; 22(3):321-8. PubMed ID: 10553284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequencing, and transcriptional analysis of the dnaK heat shock operon of Listeria monocytogenes.
    Hanawa T; Kai M; Kamiya S; Yamamoto T
    Cell Stress Chaperones; 2000 Jan; 5(1):21-9. PubMed ID: 10701836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.