BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 9371827)

  • 21. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence.
    Kim DH; Langlois MA; Lee KB; Riggs AD; Puymirat J; Rossi JJ
    Nucleic Acids Res; 2005; 33(12):3866-74. PubMed ID: 16027111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts.
    Davis BM; McCurrach ME; Taneja KL; Singer RH; Housman DE
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7388-93. PubMed ID: 9207101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of MBNL1-mediated retrograde BDNF signaling in the myotonic dystrophy brain.
    Wang PY; Kuo TY; Wang LH; Liang WH; Wang GS
    Acta Neuropathol Commun; 2023 Mar; 11(1):44. PubMed ID: 36922901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myotonic dystrophy--a multigene disorder.
    Larkin K; Fardaei M
    Brain Res Bull; 2001 Oct-Nov 1; 56(3-4):389-95. PubMed ID: 11719277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1.
    Pettersson OJ; Aagaard L; Andrejeva D; Thomsen R; Jensen TG; Damgaard CK
    Nucleic Acids Res; 2014 Jun; 42(11):7186-200. PubMed ID: 24792155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model.
    Berul CI; Maguire CT; Aronovitz MJ; Greenwood J; Miller C; Gehrmann J; Housman D; Mendelsohn ME; Reddy S
    J Clin Invest; 1999 Feb; 103(4):R1-7. PubMed ID: 10021468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2.
    Ranum LP; Day JW
    Curr Neurol Neurosci Rep; 2002 Sep; 2(5):465-70. PubMed ID: 12169228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity.
    Peng X; Shen X; Chen X; Liang R; Azares AR; Liu Y
    Biochim Biophys Acta; 2015 Jul; 1852(7):1490-7. PubMed ID: 25887157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities.
    Seznec H; Agbulut O; Sergeant N; Savouret C; Ghestem A; Tabti N; Willer JC; Ourth L; Duros C; Brisson E; Fouquet C; Butler-Browne G; Delacourte A; Junien C; Gourdon G
    Hum Mol Genet; 2001 Nov; 10(23):2717-26. PubMed ID: 11726559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Choroid plexus mis-splicing and altered cerebrospinal fluid composition in myotonic dystrophy type 1.
    Nutter CA; Kidd BM; Carter HA; Hamel JI; Mackie PM; Kumbkarni N; Davenport ML; Tuyn DM; Gopinath A; Creigh PD; Sznajder ŁJ; Wang ET; Ranum LPW; Khoshbouei H; Day JW; Sampson JB; Prokop S; Swanson MS
    Brain; 2023 Oct; 146(10):4217-4232. PubMed ID: 37143315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.
    Sobczak K; Wheeler TM; Wang W; Thornton CA
    Mol Ther; 2013 Feb; 21(2):380-7. PubMed ID: 23183533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanded CUG repeats in
    van Cruchten RTP; Wieringa B; Wansink DG
    RNA; 2019 Apr; 25(4):481-495. PubMed ID: 30700578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triplet-repeat transcripts: a role for DNA in disease.
    Singer RH
    Science; 1998 May; 280(5364):696-7. PubMed ID: 9599147
    [No Abstract]   [Full Text] [Related]  

  • 35. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation.
    Kuyumcu-Martinez NM; Wang GS; Cooper TA
    Mol Cell; 2007 Oct; 28(1):68-78. PubMed ID: 17936705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constitutive and regulated modes of splicing produce six major myotonic dystrophy protein kinase (DMPK) isoforms with distinct properties.
    Groenen PJ; Wansink DG; Coerwinkel M; van den Broek W; Jansen G; Wieringa B
    Hum Mol Genet; 2000 Mar; 9(4):605-16. PubMed ID: 10699184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts.
    Langlois MA; Lee NS; Rossi JJ; Puymirat J
    Mol Ther; 2003 May; 7(5 Pt 1):670-80. PubMed ID: 12718910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myotonic dystrophy: RNA pathogenesis comes into focus.
    Ranum LP; Day JW
    Am J Hum Genet; 2004 May; 74(5):793-804. PubMed ID: 15065017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myotonic dystrophy and myotonic dystrophy protein kinase.
    Ueda H; Ohno S; Kobayashi T
    Prog Histochem Cytochem; 2000; 35(3):187-251. PubMed ID: 11064921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.