These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 9371885)

  • 1. Parental and novel copies of the mitochondrial orf25 gene in the hybrid crop-plant triticale: predominant transcriptional expression of the maternal gene copy.
    Laser B; Mohr S; Odenbach W; Oettler G; Kück U
    Curr Genet; 1997 Nov; 32(5):337-47. PubMed ID: 9371885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype.
    Laser B; Kück U
    Curr Genet; 1995 Dec; 29(1):50-7. PubMed ID: 8595658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Inheritance of organelle DNA in rye (Secale cereale L.) and wheat (x Triticale Thch.) hybrids].
    Siniavskaia MG; Danilenko NG; Davydenko OG; Ermishina NM; Bel'ko NB; Gordeĭ IA
    Genetika; 2004 Feb; 40(2):218-23. PubMed ID: 15065429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines.
    Bento M; Gustafson P; Viegas W; Silva M
    Theor Appl Genet; 2010 Aug; 121(3):489-97. PubMed ID: 20383487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyploidization-induced genome variation in triticale.
    Ma XF; Fang P; Gustafson JP
    Genome; 2004 Oct; 47(5):839-48. PubMed ID: 15499398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing and rate of genome variation in triticale following allopolyploidization.
    Ma XF; Gustafson JP
    Genome; 2006 Aug; 49(8):950-8. PubMed ID: 17036070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of rye genes not expressed in allohexaploid triticale.
    Khalil HB; Ehdaeivand MR; Xu Y; Laroche A; Gulick PJ
    BMC Genomics; 2015 Apr; 16(1):281. PubMed ID: 25886913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of rye chromosome 2R using the polymerase chain reaction and sequence-specific DNA primers.
    Lee JH; Graybosch RA; Lee DJ
    Genome; 1994 Feb; 37(1):19-22. PubMed ID: 8181738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transferability of SSR markers among wheat, rye, and triticale.
    Kuleung C; Baenziger PS; Dweikat I
    Theor Appl Genet; 2004 Apr; 108(6):1147-50. PubMed ID: 15067402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of a recombining-repeat-sequence family in the mitochondrial genomes of wheat (Triticum aestivum L.) and rye (Secale cereale L.).
    Coulthart MB; Spencer DF; Gray MW
    Curr Genet; 1993 Mar; 23(3):255-64. PubMed ID: 8435855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale.
    Bento M; Pereira HS; Rocheta M; Gustafson P; Viegas W; Silva M
    PLoS One; 2008 Jan; 3(1):e1402. PubMed ID: 18167561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line.
    Jiang QT; Wei YM; Andre L; Lu ZX; Pu ZE; Peng YY; Zheng YL
    J Appl Genet; 2010; 51(4):403-11. PubMed ID: 21063058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the wheat mitochondrial orf25 gene.
    Bonen L; Bird S; Belanger L
    Plant Mol Biol; 1990 Nov; 15(5):793-5. PubMed ID: 2102888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular markers as a complementary tool in risk assessments: quantifying interspecific gene flow from triticale to spring wheat and durum wheat.
    Kavanagh VB; Hills MJ; Goyal A; Randhawa HS; Topinka AK; Eudes F; Hall LM
    Transgenic Res; 2013 Aug; 22(4):767-78. PubMed ID: 23389776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroplasmy and expression of mitochondrial genes in alloplasmic and euplasmic wheat.
    Kawaura K; Saeki A; Masumura T; Morita S; Ogihara Y
    Genes Genet Syst; 2011; 86(4):249-55. PubMed ID: 22214593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene.
    Ogihara Y; Kurihara Y; Futami K; Tsuji K; Murai K
    Curr Genet; 1999 Dec; 36(6):354-62. PubMed ID: 10654089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA-polymerase-related reading frame (pol-r) in the mtDNA of Secale cereale.
    Dohmen G; Tudzynski P
    Curr Genet; 1994 Jan; 25(1):59-65. PubMed ID: 8082167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine.
    Castilho A; Neves N; Rufini-Castiglione M; Viegas W; Heslop-Harrison JS
    J Cell Sci; 1999 Dec; 112 ( Pt 23)():4397-404. PubMed ID: 10564657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum.
    Tang HV; Pring DR; Shaw LC; Salazar RA; Muza FR; Yan B; Schertz KF
    Plant J; 1996 Jul; 10(1):123-33. PubMed ID: 8758982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm.
    Van Tang H; Pring DR; Muza FR; Yan B
    Curr Genet; 1996 Feb; 29(3):265-74. PubMed ID: 8595673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.