These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The NADPH oxidase and chronic granulomatous disease. Segal AW Mol Med Today; 1996 Mar; 2(3):129-35. PubMed ID: 8796870 [TBL] [Abstract][Full Text] [Related]
5. The respiratory burst oxidase and the molecular basis of chronic granulomatous disease. Babior BM Am J Hematol; 1991 Aug; 37(4):263-6. PubMed ID: 1858784 [No Abstract] [Full Text] [Related]
6. O2- production by B lymphocytes lacking the respiratory burst oxidase subunit p47phox after transfection with an expression vector containing a p47phox cDNA. Chanock SJ; Faust LR; Barrett D; Bizal C; Maly FE; Newburger PE; Ruedi JM; Smith RM; Babior BM Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10174-7. PubMed ID: 1332032 [TBL] [Abstract][Full Text] [Related]
7. The 47-kDa protein involved in the NADPH:O2 oxidoreductase activity of human neutrophils is phosphorylated by cyclic AMP-dependent protein kinase without induction of a respiratory burst. Kramer IM; van der Bend RL; Verhoeven AJ; Roos D Biochim Biophys Acta; 1988 Sep; 971(2):189-96. PubMed ID: 2844287 [TBL] [Abstract][Full Text] [Related]
8. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Nanda A; Grinstein S; Curnutte JT Proc Natl Acad Sci U S A; 1993 Jan; 90(2):760-4. PubMed ID: 8421713 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms for the activation/electron transfer of neutrophil NADPH-oxidase complex and molecular pathology of chronic granulomatous disease. Umeki S Ann Hematol; 1994 Jun; 68(6):267-77. PubMed ID: 8038232 [TBL] [Abstract][Full Text] [Related]
11. Delineation of the phagocyte NADPH oxidase through studies of chronic granulomatous diseases of childhood. Gallin JI Int J Tissue React; 1993; 15(3):99-103. PubMed ID: 8188451 [TBL] [Abstract][Full Text] [Related]
12. Protein phosphorylation and the respiratory burst. Babior BM Arch Biochem Biophys; 1988 Aug; 264(2):361-7. PubMed ID: 3041911 [TBL] [Abstract][Full Text] [Related]
13. NADPH:O2 oxidoreductase of human eosinophils in the cell-free system. Bolscher BG; Koenderman L; Tool AT; Stokman PM; Roos D FEBS Lett; 1990 Jul; 268(1):269-73. PubMed ID: 2384165 [TBL] [Abstract][Full Text] [Related]
14. NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558. Tsunawaki S; Mizunari H; Namiki H; Kuratsuji T J Exp Med; 1994 Jan; 179(1):291-7. PubMed ID: 8270871 [TBL] [Abstract][Full Text] [Related]
15. Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A22(0) CGD)-derived B lymphocyte cell lines by transfection with p22phax cDNA. Maly FE; Schuerer-Maly CC; Quilliam L; Cochrane CG; Newburger PE; Curnutte JT; Gifford M; Dinauer MC J Exp Med; 1993 Dec; 178(6):2047-53. PubMed ID: 8245781 [TBL] [Abstract][Full Text] [Related]
18. Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Dinauer MC; Pierce EA; Erickson RW; Muhlebach TJ; Messner H; Orkin SH; Seger RA; Curnutte JT Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11231-5. PubMed ID: 1763037 [TBL] [Abstract][Full Text] [Related]
19. Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. McPhail LC; Qualliotine-Mann D; Waite KA Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7931-5. PubMed ID: 7644515 [TBL] [Abstract][Full Text] [Related]
20. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. Vowells SJ; Fleisher TA; Sekhsaria S; Alling DW; Maguire TE; Malech HL J Pediatr; 1996 Jan; 128(1):104-7. PubMed ID: 8551399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]