These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9372139)

  • 1. Sprouting and connectivity of embryonic leech heart excitor (HE) motor neurons in the absence of their peripheral target.
    Jellies J; Kopp DM
    Invert Neurosci; 1995; 1(2):145-57. PubMed ID: 9372139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of segment- and target-related neuronal identity in the medicinal leech.
    Jellies J; Kopp DM; Bledsoe JW
    J Exp Biol; 1992 Sep; 170():71-92. PubMed ID: 1402613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of peripheral target contact influences the development of identified central dendritic branches in a leech motor neuron in vivo.
    Johnson LA; Kristan WB; Jellies J; French KA
    J Neurobiol; 2000 Jun; 43(4):365-78. PubMed ID: 10861562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmentally regulated tissue-associated cues influence axon sprouting and outgrowth and may contribute to target specificity.
    Harik TM; Attaman J; Crowley AE; Jellies J
    Dev Biol; 1999 Aug; 212(2):351-65. PubMed ID: 10433826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrally patterned rhythmic activity integrated by a peripheral circuit linking multiple oscillators.
    Jellies J; Kueh D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Aug; 198(8):567-82. PubMed ID: 22576728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal and abnormal development of an identified leech motor neuron.
    Kuwada JY
    J Embryol Exp Morphol; 1984 Feb; 79():125-37. PubMed ID: 6716040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the pattern of axonal projections of a leech motor neuron by ablation or transplantation of its target.
    Baptista CA; Macagno ER
    Neuron; 1988 Dec; 1(10):949-62. PubMed ID: 3272158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antennapedia-class homebox genes define diverse neuronal sets in the embryonic CNS of the leech.
    Aisemberg GO; Wysocka-Diller J; Wong VY; Macagno ER
    J Neurobiol; 1993 Oct; 24(10):1423-32. PubMed ID: 7901325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturation of peptide-positive synaptic arbors in the medicinal leech requires rhythmic target activity.
    Kueh D; Appiah J; Jellies J
    J Comp Neurol; 2013 Aug; 521(12):2833-49. PubMed ID: 23436395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarities and differences in the structure of segmentally homologous neurons that control the hearts of the leech, Hirudo medicinalis.
    Shafer MR; Calabrese RL
    Cell Tissue Res; 1981; 214(1):137-53. PubMed ID: 7471170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific pathway selection by the early projections of individual peripheral sensory neurons in the embryonic medicinal leech.
    Jellies J; Johansen K; Johansen J
    J Neurobiol; 1994 Oct; 25(10):1187-99. PubMed ID: 7815053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of the receptive fields of leech mechanosensory neurons during embryonic development.
    Kramer AP; Kuwada JY
    J Neurosci; 1983 Dec; 3(12):2474-86. PubMed ID: 6317810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2992-3005. PubMed ID: 17804574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and morphological analysis of synaptic transmission between leech motor neurons.
    Granzow B; Friesen WO; Kristan WB
    J Neurosci; 1985 Aug; 5(8):2035-50. PubMed ID: 2991480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-dependent coupling between rhythmically active neurons in the leech.
    Peterson E
    Biophys J; 1983 Jul; 43(1):53-61. PubMed ID: 6309265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of presynaptic activity and synaptic strength interact to produce motor output.
    Wright TM; Calabrese RL
    J Neurosci; 2011 Nov; 31(48):17555-71. PubMed ID: 22131417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    García PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord.
    Hanson MG; Landmesser LT
    J Neurosci; 2003 Jan; 23(2):587-600. PubMed ID: 12533619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.