These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9372145)

  • 1. Regulation of calcium currents and secretion by magnesium in crustacean peptidergic neurons.
    Richmond JE; Sher E; Keller R; Haylett B; Reichwein B; Cooke IM
    Invert Neurosci; 1995 Dec; 1(3):215-21. PubMed ID: 9372145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Ca2+ current in freshly dissociated crustacean peptidergic neuronal somata.
    Richmond JE; Sher E; Cooke IM
    J Neurophysiol; 1995 Jun; 73(6):2357-68. PubMed ID: 7666144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of ionic currents in the soma and growing region of an identified peptidergic neuron in defined culture.
    Meyers DE
    J Neurophysiol; 1993 Feb; 69(2):406-15. PubMed ID: 7681474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Ca2+ current in isolated terminals of crustacean peptidergic neurons.
    Richmond JE; Penner R; Keller R; Cooke IM
    J Exp Biol; 1996 Sep; 199(Pt 9):2053-9. PubMed ID: 8831146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of peptide hormone in single cultured secretory neurons of the crab, Cardisoma carnifex.
    Keller R; Grau S; Cooke IM
    Cell Tissue Res; 1995 Sep; 281(3):525-32. PubMed ID: 7553771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Ca2+ currents of peptidergic neurons developing differing morphology with time in culture.
    Meyers DE; Cooke IM
    J Exp Biol; 1997 Feb; 200(Pt 4):723-33. PubMed ID: 9076963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of omega-conotoxin-sensitive Ca2+ channel currents by internal Mg2+ in cultured rat cerebellar granule neurones.
    Pearson HA; Dolphin AC
    Pflugers Arch; 1993 Dec; 425(5-6):518-27. PubMed ID: 8134268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulatory effect of extracellular Mg2+ ions on K+ and Ca2+ currents of capillary endothelial cells from rat brain.
    Delpiano MA; Altura BM
    FEBS Lett; 1996 Oct; 394(3):335-9. PubMed ID: 8830669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of transient K+ current by La3+ in crab peptide-secretory neurons.
    Duan S; Cooke IM
    J Neurophysiol; 1999 Apr; 81(4):1848-55. PubMed ID: 10200219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-conductance Ca2+-activated potassium channels in secretory neurons.
    Lara J; Acevedo JJ; Onetti CG
    J Neurophysiol; 1999 Sep; 82(3):1317-25. PubMed ID: 10482751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and identification of crustacean hyperglycemic hormone producing neurosecretory cells in the eyestalk of blue swimmer crab, Portunus pelagicus.
    Rajendiran S; Vasudevan S
    Microsc Res Tech; 2016 Nov; 79(11):1024-1030. PubMed ID: 27460068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function.
    Hsu YW; Messinger DI; Chung JS; Webster SG; de la Iglesia HO; Christie AE
    J Exp Biol; 2006 Aug; 209(Pt 16):3241-56. PubMed ID: 16888072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones.
    Wang LY; MacDonald JF
    J Physiol; 1995 Jul; 486 ( Pt 1)(Pt 1):83-95. PubMed ID: 7562646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enkephalinergic control of the secretory activity of neurons producing stereoisomers of crustacean hyperglycemic hormone in the eyestalk of the crayfish Orconectes limosus.
    Ollivaux C; Dircksen H; Toullec JY; Soyez D
    J Comp Neurol; 2002 Feb; 444(1):1-9. PubMed ID: 11835178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenergic regulation of the intracellular [Ca2+] and voltage-operated Ca2+ channel currents in the rat prostate neuroendocrine cells.
    Kim JH; Shin SY; Nam JH; Hong EK; Chung YS; Jeong JY; Kang J; Uhm DY; Kim SJ
    Prostate; 2003 Oct; 57(2):99-110. PubMed ID: 12949933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct low-voltage-activated Ca2+ currents contribute to the pacemaker mechanism in cockroach dorsal unpaired median neurons.
    Grolleau F; Lapied B
    J Neurophysiol; 1996 Aug; 76(2):963-76. PubMed ID: 8871211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of calcium channel blockade in relaxation of tracheal smooth muscle by extracellular Mg2+.
    Sonna LA; Hirshman CA; Croxton TL
    Am J Physiol; 1996 Aug; 271(2 Pt 1):L251-7. PubMed ID: 8770064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common precursor to two major crab neurosecretory peptides.
    Stuenkel EL
    Peptides; 1986; 7(3):397-406. PubMed ID: 3774586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.