BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9372149)

  • 1. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster.
    Ueda A; Kidokoro Y
    Invert Neurosci; 1996 Mar; 1(4):315-22. PubMed ID: 9372149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Drosophila larval neuromuscular junctions: maintaining synaptic strength.
    Li H; Peng X; Cooper RL
    Neuroscience; 2002; 115(2):505-13. PubMed ID: 12421617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature endplate currents at the newly formed neuromuscular junction in Drosophila embryos and larvae.
    Kidokoro Y; Nishikawa K
    Neurosci Res; 1994 Mar; 19(2):143-54. PubMed ID: 8008242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae.
    Ormerod KG; Jung J; Mercier AJ
    J Neurogenet; 2018 Sep; 32(3):183-194. PubMed ID: 30303434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Recordings of Postsynaptic Voltage Responses at the Drosophila Neuromuscular Junction.
    Valakh V; Flyer-Adams JG
    Methods Mol Biol; 2020; 2143():159-168. PubMed ID: 32524479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halothane presynaptically depresses synaptic transmission in wild-type Drosophila larvae but not in halothane-resistant (har) mutants.
    Nishikawa K; Kidokoro Y
    Anesthesiology; 1999 Jun; 90(6):1691-7. PubMed ID: 10360868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila.
    Peron S; Zordan MA; Magnabosco A; Reggiani C; Megighian A
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Oct; 154(2):173-83. PubMed ID: 19427393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenic responses elicited by transmembrane depolarizing current in aerated body wall muscles of Drosophila melanogaster larvae.
    Yamaoka K; Ikeda K
    J Comp Physiol A; 1988 Oct; 163(6):705-14. PubMed ID: 3143830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction.
    Hewes RS; Snowdeal EC; Saitoe M; Taghert PH
    J Neurosci; 1998 Sep; 18(18):7138-51. PubMed ID: 9736637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octopamine inhibits synaptic transmission at the larval neuromuscular junction in Drosophila melanogaster.
    Nishikawa K; Kidokoro Y
    Brain Res; 1999 Aug; 837(1-2):67-74. PubMed ID: 10433989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila.
    Kurdyak P; Atwood HL; Stewart BA; Wu CF
    J Comp Neurol; 1994 Dec; 350(3):463-72. PubMed ID: 7884051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varied effects of 1-octanol on gap junctional communication between ovarian epithelial cells and oocytes of Oncopeltus fasciatus, Hyalophora cecropia, and Drosophila melanogaster.
    Adler EL; Woodruff RI
    Arch Insect Biochem Physiol; 2000 Jan; 43(1):22-32. PubMed ID: 10613960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of the larval neuromuscular junction in Drosophila melanogaster.
    Jan LY; Jan YN
    J Physiol; 1976 Oct; 262(1):189-214. PubMed ID: 11339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae.
    Feng Y; Ueda A; Wu CF
    J Neurogenet; 2004; 18(2):377-402. PubMed ID: 15763995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depression of synaptic efficacy in high- and low-output Drosophila neuromuscular junctions by the molting hormone (20-HE).
    Ruffner ME; Cromarty SI; Cooper RL
    J Neurophysiol; 1999 Feb; 81(2):788-94. PubMed ID: 10036278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster.
    Ormerod KG; LePine OK; Bhutta MS; Jung J; Tattersall GJ; Mercier AJ
    J Neurophysiol; 2016 Jan; 115(1):568-80. PubMed ID: 26538605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae.
    de Castro C; Titlow J; Majeed ZR; Cooper RL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jan; 200(1):83-92. PubMed ID: 24190421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate neuromuscular target selection following the loss of single muscle fibers in Drosophila.
    Cash S; Chiba A; Keshishian H
    J Neurosci; 1992 Jun; 12(6):2051-64. PubMed ID: 1318955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae.
    Ball R; Xing B; Bonner P; Shearer J; Cooper RL
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Feb; 134(2):247-55. PubMed ID: 12547254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-clamp analysis of gap junctions between embryonic muscles in Drosophila.
    Gho M
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):371-83. PubMed ID: 7537815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.