These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 9372167)
1. Quantitation of shock wave lithotripsy-induced lesion in small and large pig kidneys. Blomgren PM; Connors BA; Lingeman JE; Willis LR; Evan AP Anat Rec; 1997 Nov; 249(3):341-8. PubMed ID: 9372167 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury. Handa RK; Territo PR; Blomgren PM; Persohn SA; Lin C; Johnson CD; Jiang L; Connors BA; Hutchins GD Urolithiasis; 2017 Oct; 45(5):507-513. PubMed ID: 28074231 [TBL] [Abstract][Full Text] [Related]
3. Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: nephron injury. Shao Y; Connors BA; Evan AP; Willis LR; Lifshitz DA; Lingeman JE Anat Rec A Discov Mol Cell Evol Biol; 2003 Nov; 275(1):979-89. PubMed ID: 14533172 [TBL] [Abstract][Full Text] [Related]
4. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy. Connors BA; Evan AP; Blomgren PM; Hsi RS; Harper JD; Sorensen MD; Wang YN; Simon JC; Paun M; Starr F; Cunitz BW; Bailey MR; Lingeman JE J Urol; 2014 Jan; 191(1):235-41. PubMed ID: 23917165 [TBL] [Abstract][Full Text] [Related]
5. Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. Willis LR; Evan AP; Connors BA; Blomgren P; Fineberg NS; Lingeman JE J Am Soc Nephrol; 1999 Aug; 10(8):1753-62. PubMed ID: 10446943 [TBL] [Abstract][Full Text] [Related]
6. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. Connors BA; Evan AP; Willis LR; Blomgren PM; Lingeman JE; Fineberg NS J Am Soc Nephrol; 2000 Feb; 11(2):310-318. PubMed ID: 10665938 [TBL] [Abstract][Full Text] [Related]
7. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. Connors BA; Evan AP; Blomgren PM; Handa RK; Willis LR; Gao S BJU Int; 2009 Jan; 103(1):104-7. PubMed ID: 18680494 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor. Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983 [TBL] [Abstract][Full Text] [Related]
9. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388 [TBL] [Abstract][Full Text] [Related]
10. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. Evan AP; McAteer JA; Connors BA; Blomgren PM; Lingeman JE BJU Int; 2007 Sep; 100(3):624-7; discussion 627-8. PubMed ID: 17550415 [TBL] [Abstract][Full Text] [Related]
11. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070 [TBL] [Abstract][Full Text] [Related]
13. Potential for cavitation-mediated tissue damage in shockwave lithotripsy. Matlaga BR; McAteer JA; Connors BA; Handa RK; Evan AP; Williams JC; Lingeman JE; Willis LR J Endourol; 2008 Jan; 22(1):121-6. PubMed ID: 18315482 [TBL] [Abstract][Full Text] [Related]
14. Shock wave lithotripsy does not impair renal function in a Swine model of metabolic syndrome. Handa RK; Johnson CD; Connors BA; Evan AP; Phillips CL; Liu Z J Endourol; 2015 Apr; 29(4):468-73. PubMed ID: 25285417 [TBL] [Abstract][Full Text] [Related]
15. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871 [TBL] [Abstract][Full Text] [Related]
16. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. Handa RK; Bailey MR; Paun M; Gao S; Connors BA; Willis LR; Evan AP BJU Int; 2009 May; 103(9):1270-4. PubMed ID: 19154458 [TBL] [Abstract][Full Text] [Related]
17. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457 [TBL] [Abstract][Full Text] [Related]
18. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Handa RK; McAteer JA; Willis LR; Pishchalnikov YA; Connors BA; Ying J; Lingeman JE; Evan AP BJU Int; 2007 May; 99(5):1134-42. PubMed ID: 17309558 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Sheir KZ; Lee D; Humphrey PA; Morrissey K; Sundaram CP; Clayman RV Urology; 2003 Nov; 62(5):964-7. PubMed ID: 14624935 [TBL] [Abstract][Full Text] [Related]
20. Biological effects of shock waves: kidney haemorrhage by shock waves in dogs--administration rate dependence. Delius M; Jordan M; Eizenhoefer H; Marlinghaus E; Heine G; Liebich HG; Brendel W Ultrasound Med Biol; 1988; 14(8):689-94. PubMed ID: 3212839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]