BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9372167)

  • 21. Electrohydraulic shock wave induced renal injury.
    Begun FP; Lawson RK; Kearns CM; Tieu TM
    J Urol; 1989 Jul; 142(1):155-9. PubMed ID: 2733096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavitation detection during shock-wave lithotripsy.
    Bailey MR; Pishchalnikov YA; Sapozhnikov OA; Cleveland RO; McAteer JA; Miller NA; Pishchalnikova IV; Connors BA; Crum LA; Evan AP
    Ultrasound Med Biol; 2005 Sep; 31(9):1245-56. PubMed ID: 16176791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model.
    Connors BA; Evan AP; Blomgren PM; Handa RK; Willis LR; Gao S; McAteer JA; Lingeman JE
    BJU Int; 2009 Oct; 104(7):1004-8. PubMed ID: 19338532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction.
    Delvecchio F; Auge BK; Munver R; Brown SA; Brizuela R; Zhong P; Preminger GM
    J Urol; 2003 Apr; 169(4):1526-9. PubMed ID: 12629408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reducing shock number dramatically decreases lesion size in a juvenile kidney model.
    Connors BA; Evan AP; Blomgren PM; Willis LR; Handa RK; Lifshitz DA; Lingeman JE; Ying J
    J Endourol; 2006 Sep; 20(9):607-11. PubMed ID: 16999608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal disease potentiates the injury caused by SWL.
    Evan AP; Connors BA; Pennington DJ; Blomgren PM; Lingeman JE; Fineberg NS; Willis LR
    J Endourol; 1999 Nov; 13(9):619-28. PubMed ID: 10608512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histopathologic effects of extracorporeal shock wave lithotripsy on rabbit kidney.
    Karalezli G; Gögüş O; Bedük Y; Köküuslu C; Sarica K; Kutsal O
    Urol Res; 1993 Jan; 21(1):67-70. PubMed ID: 8456541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathologic effects of ESWL on canine renal tissue.
    Newman R; Hackett R; Senior D; Brock K; Feldman J; Sosnowski J; Finlayson B
    Urology; 1987 Feb; 29(2):194-200. PubMed ID: 3811098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shock wave lithotripsy-induced renal injury.
    Evan AP; Willis LR; Connors B; Reed G; McAteer JA; Lingeman JE
    Am J Kidney Dis; 1991 Apr; 17(4):445-50. PubMed ID: 2008914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves.
    Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE
    J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy.
    Clark DL; Connors BA; Handa RK; Evan AP
    Urol Res; 2011 Dec; 39(6):437-42. PubMed ID: 21387182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Out-of-focus shockwaves: a new tissue-protecting therapy?
    Loske AM; Gutierrez J; Di Grazia E; Fernández F
    Arch Ital Urol Androl; 2004 Dec; 76(4):159-62. PubMed ID: 15693429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of shock wave number on renal oxidative stress and inflammation.
    Clark DL; Connors BA; Evan AP; Handa RK; Gao S
    BJU Int; 2011 Jan; 107(2):318-22. PubMed ID: 20438571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prefocal alignment improves stone comminution in shockwave lithotripsy.
    Sokolov DL; Bailey MR; Crum LA; Blomgren PM; Connors BA; Evan AP
    J Endourol; 2002 Dec; 16(10):709-15. PubMed ID: 12542872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the impact of shock wave lithotripsy on kidneys using a new marker: how do neutrophil gelatinese-associated lypocalin values change after shock wave lithotripsy?
    Zekey F; Senkul T; Ates F; Soydan H; Yilmaz O; Baykal K
    Urology; 2012 Aug; 80(2):267-72. PubMed ID: 22503759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of SWL on glomerular filtration rate and renal plasma flow in uninephrectomized minipigs.
    Willis LR; Evan AP; Connors BA; Fineberg NS; Lingeman JE
    J Endourol; 1997 Feb; 11(1):27-32. PubMed ID: 9048294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new optical coupling control technique and application in SWL.
    Lv JL
    Urolithiasis; 2016 Nov; 44(6):539-544. PubMed ID: 27025864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol.
    Munver R; Delvecchio FC; Kuo RL; Brown SA; Zhong P; Preminger GM
    J Urol; 2002 Jan; 167(1):327-34. PubMed ID: 11743351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The protective effects of three components isolated from Astragalus membranaceus on shock wave lithotripsy induced kidney injury in rabbit model].
    Li X; He DL; Zhang LL; Chen XF; Luo Y; Sheng BW; Yu LH
    Zhonghua Yi Xue Za Zhi; 2005 Aug; 85(31):2201-6. PubMed ID: 16321185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.