BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9372179)

  • 1. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamyl-tRNA sythetase.
    Freist W; Gauss DH; Söll D; Lapointe J
    Biol Chem; 1997 Nov; 378(11):1313-29. PubMed ID: 9426192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases.
    Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R
    Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.
    Quevillon S; Robinson JC; Berthonneau E; Siatecka M; Mirande M
    J Mol Biol; 1999 Jan; 285(1):183-95. PubMed ID: 9878398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA; Perona JJ; Söll D; Steitz TA
    Science; 1989 Dec; 246(4934):1135-42. PubMed ID: 2479982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon.
    Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D
    J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
    Liu J; Ibba M; Hong KW; Söll D
    Biochemistry; 1998 Jul; 37(27):9836-42. PubMed ID: 9657697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
    Kitabatake M; Ibba M; Hong KW; Söll D; Inokuchi H
    Mol Gen Genet; 1996 Oct; 252(6):717-22. PubMed ID: 8917315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
    Arnez JG; Steitz TA
    Biochemistry; 1996 Nov; 35(47):14725-33. PubMed ID: 8942633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered aminoacyl-tRNA synthetase complexes in CHO cell mutants.
    Pahuski E; Klekamp M; Condon T; Hampel AE
    J Cell Physiol; 1983 Jan; 114(1):82-7. PubMed ID: 6826664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.