BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9372472)

  • 41. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture.
    Pulkkinen P; Partanen J; Jalovaara P; Jämsä T
    Osteoporos Int; 2004 Apr; 15(4):274-80. PubMed ID: 14760516
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of the hip joint contact force in subjects with Perthes based on OpenSIM.
    Karimi MT; Gutierrez-Farewik L; McGarry A
    Med Eng Phys; 2019 May; 67():44-48. PubMed ID: 30876816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of leptin in Legg-Calvé-Perthes disease.
    Lee JH; Zhou L; Kwon KS; Lee D; Park BH; Kim JR
    J Orthop Res; 2013 Oct; 31(10):1605-10. PubMed ID: 23832827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes.
    Taaffe DR; Snow-Harter C; Connolly DA; Robinson TL; Brown MD; Marcus R
    J Bone Miner Res; 1995 Apr; 10(4):586-93. PubMed ID: 7610929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT--correlation with biomechanical strength measurement.
    Huber MB; Carballido-Gamio J; Bauer JS; Baum T; Eckstein F; Lochmüller EM; Majumdar S; Link TM
    Radiology; 2008 May; 247(2):472-81. PubMed ID: 18430879
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related proximal femur bone mineral loss in South Indian women: a dual energy X-ray absorptiometry study.
    Anburajan M; Rethinasabapathi C; Korath MP; Ponnappa BG; Kumar KS; Panicker TM; Govindan A; Jagadeesan GN
    J Assoc Physicians India; 2001 Apr; 49():442-5. PubMed ID: 11762616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men.
    Gonnelli S; Cepollaro C; Gennari L; Montagnani A; Caffarelli C; Merlotti D; Rossi S; Cadirni A; Nuti R
    Osteoporos Int; 2005 Aug; 16(8):963-8. PubMed ID: 15599495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Modified neck-lengthening osteotomy after Morscher in children and adolescents].
    Placzek R; Gathen M; Koob S; Jacobs C; Ploeger MM
    Oper Orthop Traumatol; 2018 Oct; 30(5):379-386. PubMed ID: 30091056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential for bisphosphonate treatment in Legg-Calve-Perthes disease.
    Little DG; Kim HK
    J Pediatr Orthop; 2011 Sep; 31(2 Suppl):S182-8. PubMed ID: 21857436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for impaired skeletal load adaptation among Canadian women with type 2 diabetes mellitus: insight into the BMD and bone fragility paradox.
    Hamilton CJ; Jamal SA; Beck TJ; Khaled AS; Adachi JD; Brown JP; Davison KS;
    Metabolism; 2013 Oct; 62(10):1401-5. PubMed ID: 23768546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sex specific association of physical activity on proximal femur BMD in 9 to 10 year-old children.
    Cardadeiro G; Baptista F; Ornelas R; Janz KF; Sardinha LB
    PLoS One; 2012; 7(11):e50657. PubMed ID: 23209801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone age determination in children with Legg-Calvé-Perthes disease: a comparison of two methods.
    Loder RT; Farley FA; Herring JA; Schork MA; Shyr Y
    J Pediatr Orthop; 1995; 15(1):90-4. PubMed ID: 7883936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radiological measurement of femoral head position in Legg-Calvé-Perthes disease.
    Kaniklides C; Dimopoulos P
    Acta Radiol; 1996 Nov; 37(6):863-9. PubMed ID: 8995456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone loading during young adulthood predicts bone mineral density in physically active, middle-aged men.
    Rogers RS; Hinton PS
    Phys Sportsmed; 2010 Jun; 38(2):146-55. PubMed ID: 20631474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A probable case of Legg-Calvé-Perthes disease in Warring States-era China.
    Berger E; Chen L; Sun Z; Sun Z
    Int J Paleopathol; 2017 Mar; 16():27-30. PubMed ID: 28290307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bone mineral density of the hip and knee in children with spinal cord injury.
    Lauer R; Johnston TE; Smith BT; Mulcahey MJ; Betz RR; Maurer AH
    J Spinal Cord Med; 2007; 30 Suppl 1(Suppl 1):S10-4. PubMed ID: 17874680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone mineral status of women with Marfan syndrome.
    Kohlmeier L; Gasner C; Marcus R
    Am J Med; 1993 Dec; 95(6):568-72. PubMed ID: 8259773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the bone mineral density of the subjects with avascular necrosis of hip joint.
    Karimi MT; Nodoshan SM
    Clin Cases Miner Bone Metab; 2016; 13(2):141-143. PubMed ID: 27920812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The association between dietary inflammatory properties and bone mineral density and risk of fracture in US adults.
    Mazidi M; Shivappa N; Wirth MD; Hebert JR; Vatanparast H; Kengne AP
    Eur J Clin Nutr; 2017 Nov; 71(11):1273-1277. PubMed ID: 29019343
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.
    Sievänen H; Uusi-Rasi K; Heinonen A; Oja P; Vuori I
    Osteoporos Int; 1999; 10(4):295-302. PubMed ID: 10692978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.